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Abstract: 

Medical imaging plays a pivotal role in clinical diagnostics, yet in many 

resource-limited hospitals and rural healthcare centers, the acquisition and 

preservation of high-quality CT and MRI scans are often compromised 

due to hardware degradation, motion artifacts, transmission noise, and 

incomplete data capture. These issues severely impact diagnostic accuracy 

and limit timely medical intervention. In response, this paper presents a 

robust Generative AI-based reconstruction framework that virtually 

restores degraded or partially corrupted medical images without requiring 

additional scans or expensive infrastructure upgrades. The proposed 

system integrates a Variational Autoencoder (VAE) to model global 

anatomical priors, a Generative Adversarial Network (GAN) for 

generating visually realistic textures, and an attention mechanism that 

adaptively prioritizes damaged regions during reconstruction. Trained on 

annotated CT and MRI datasets from public repositories such as BraTS 

and TCIA, the model optimizes a hybrid loss function combining pixel-

wise, adversarial, and perceptual components to balance accuracy and 

realism. Extensive quantitative evaluations demonstrate the superiority of 

the proposed method over traditional models. It achieves a Peak Signal-to-

Noise Ratio (PSNR) of 31.2 dB, Structural Similarity Index (SSIM) of 

0.91, Fréchet Inception Distance (FID) of 32.6, and an average Radiologist 

Grading Score (RGS) of 4.6 out of 5. Furthermore, the model is 

successfully deployed on a Raspberry Pi 4B, achieving 2.1 frames per 

second (FPS) inference, validating its real-time applicability in low-power 

settings. This framework offers a scalable, cost-effective solution to bridge 

the diagnostic imaging gap in under-resourced healthcare environments. 

Keywords: Generative AI, Medical Image Reconstruction, CT/MRI 

Restoration, Resource-Limited Hospitals, GAN, VAE, Image Inpainting, 
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1. Introduction 

Medical imaging has revolutionized modern clinical 

diagnostics, playing a central role in detecting, 

characterizing, and monitoring a broad spectrum of 

diseases. Among the various imaging modalities, 

Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI) stand out due to their 

unparalleled ability to render fine-grained anatomical 

and functional information. CT provides rapid, high-

resolution volumetric data ideal for evaluating 

structural abnormalities, trauma, and vascular 

anomalies, while MRI offers superior soft-tissue 

contrast for assessing neurological, musculoskeletal, 

and oncological conditions. These modalities are 

essential not only for accurate diagnosis but also for 
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treatment planning, surgical navigation, and 

longitudinal disease monitoring. 

Despite their diagnostic power, the effective use of 

CT and MRI is often constrained in resource-limited 

settings such as rural hospitals, community clinics, 

and developing nations. These environments 

typically suffer from inadequate infrastructure, lack 

of advanced imaging hardware, limited bandwidth for 

image transmission, and insufficient data storage 

capacities. Compounding these limitations are 

operational challenges, such as power fluctuations, 

outdated maintenance protocols, and underqualified 

technicians, all of which contribute to the frequent 

generation of suboptimal or partially damaged scans. 

Additionally, the high cost associated with re-

imaging—both in terms of time and financial 

burden—renders re-scanning impractical for many 

patients in underserved communities. 

A common outcome in such environments is the 

occurrence of incomplete or corrupted medical 

images. These defects may arise from patient motion 

during the scan, low signal-to-noise ratios, hardware-

induced artifacts, or data loss during compression and 

transfer. The implications of these deficiencies are 

profound: radiologists are often forced to interpret 

images with missing anatomical regions or distorted 

structures, increasing the risk of misdiagnosis. In 

oncological contexts, for instance, a missing lesion 

boundary in an MRI can result in an incorrect tumor 

staging, leading to inappropriate treatment plans. In 

neurological assessments, corrupted CT images may 

obscure microhemorrhages or ischemic infarcts, 

undermining timely intervention in stroke patients. 

These examples underscore the critical need for 

reliable image reconstruction tools that can restore 

the integrity of degraded scans. 

Traditional approaches to medical image 

reconstruction and enhancement, such as 

interpolation-based inpainting, denoising filters, and 

histogram equalization techniques, have long been 

utilized to rectify corrupted regions or improve visual 

clarity. While these classical methods are 

computationally efficient, they often operate under 

simplifying assumptions, such as local smoothness or 

Gaussian noise distributions, and lack the capacity to 

model complex anatomical variability. As a result, 

they frequently produce over-smoothed or 

anatomically implausible reconstructions, particularly 

in the presence of large occlusions or heterogeneous 

tissues. Manual correction by expert radiologists, on 

the other hand, is time-consuming, highly subjective, 

and infeasible at scale—particularly in low-resource 

clinical environments already burdened by limited 

personnel. 

In recent years, the emergence of deep learning has 

introduced powerful new paradigms for medical 

image analysis. Convolutional neural networks 

(CNNs), recurrent architectures, and attention-based 

models have achieved state-of-the-art performance in 

segmentation, classification, and anomaly detection 

tasks. However, the advent of Generative AI, 

particularly models such as Generative Adversarial 

Networks (GANs) and Variational Autoencoders 

(VAEs), has opened up new frontiers in image 

synthesis and reconstruction. These models possess 

the unique ability to learn high-dimensional 

distributions of complex data, enabling them to 

generate novel yet realistic samples that are 

statistically consistent with the training data. 

In the context of medical imaging, generative models 

can learn to map the latent anatomical structure of 

organs, tissues, and pathologies across a large corpus 

of healthy and pathological scans. When presented 

with a damaged or incomplete image, such models 

can infer the missing regions by sampling from the 

learned distribution and synthesizing anatomically 

coherent structures. Unlike deterministic models, 

which often produce blurry or repetitive outputs, 

GANs can capture fine-grained textures and 

contextual details by optimizing a min-max 

adversarial loss between a generator and a 

discriminator network. VAEs, on the other hand, 

introduce a probabilistic latent space that encourages 

smooth interpolations and regularized feature 

representations, making them robust to noise and 

missing inputs. 

Despite their potential, most existing applications of 

generative models in medical imaging are confined to 

research settings or high-resource environments, due 

to the substantial computational demands, data 

requirements, and architectural complexity of these 

models. Moreover, few studies have directly 

addressed the specific challenges faced in resource-

limited clinical environments, where reconstruction 

methods must be lightweight, robust to noise, and 

capable of generalizing across diverse imaging 
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artifacts. There is a pressing need for a unified 

generative framework that balances high-fidelity 

reconstruction with deployment feasibility, 

particularly for healthcare systems operating under 

financial and technological constraints. 

In this paper, we present a novel Generative AI 

framework tailored for the virtual reconstruction of 

damaged CT and MRI scans in resource-limited 

hospitals. Our approach introduces a hybrid 

architecture that synergistically combines the 

strengths of GANs and VAEs while integrating an 

attention-guided mechanism that adaptively focuses 

on corrupted regions. This enables the model to 

maintain both global anatomical coherence and local 

structural detail, which is critical for clinical 

interpretability. The architecture is trained using a 

multi-objective loss function that combines pixel-

wise mean squared error (MSE), perceptual similarity 

loss based on pre-trained convolutional features (e.g., 

VGGNet), and adversarial loss to promote realistic 

synthesis. Additionally, the model incorporates 

domain-specific regularization to preserve anatomical 

plausibility and avoid pathological hallucinations. 

To simulate real-world imaging defects, we curate 

and augment open-access datasets such as the Brain 

Tumor Segmentation (BraTS) dataset and the Cancer 

Imaging Archive (TCIA) with synthetic corruptions 

that reflect common imaging failures—such as 

motion blur, signal dropout, partial occlusion, and 

scan truncation. Through rigorous evaluation on 

quantitative metrics such as Peak Signal-to-Noise 

Ratio (PSNR), Structural Similarity Index Measure 

(SSIM), and Fréchet Inception Distance (FID), as 

well as clinical validation by radiologists, we 

demonstrate that our framework achieves superior 

reconstruction fidelity compared to conventional 

inpainting techniques and standalone generative 

models. 

A key contribution of our work is its emphasis on 

practical deployability. We implement and evaluate a 

lightweight version of the model suitable for edge 

computing devices, such as Raspberry Pi and Jetson 

Nano platforms, which are increasingly adopted in 

rural and mobile healthcare setups. Our experiments 

confirm that the quantized model achieves near real-

time inference speeds without significant loss in 

reconstruction quality, making it viable for point-of-

care diagnostics in field hospitals or telemedicine 

units. 

Moreover, the implications of our work extend 

beyond individual image correction. The ability to 

restore degraded imaging data without requiring 

repeat scans not only reduces patient exposure to 

ionizing radiation (in the case of CT) and contrast 

agents (in MRI) but also alleviates operational 

burdens on imaging departments. It can also support 

retrospective analysis in longitudinal studies where 

historical scans may be corrupted or incomplete. In 

low-income healthcare systems, where imaging 

appointments are often delayed due to machine 

scarcity or maintenance lapses, our approach can 

serve as a vital tool for improving diagnostic 

coverage and treatment equity. 

From a research perspective, this study contributes to 

the growing body of literature on trustworthy and 

explainable AI in healthcare. We investigate the 

latent representations learned by the generative 

models and analyze their interpretability using 

attention heatmaps and feature attribution techniques 

such as Grad-CAM. These insights offer clinicians 

visibility into the model’s decision-making process, 

promoting confidence in its outputs and facilitating 

integration into clinical workflows. Furthermore, by 

training the model on multi-center datasets with 

heterogeneous acquisition protocols, we demonstrate 

its robustness across scanner types and patient 

populations, enhancing its generalizability. 

 

2. Literature Survey 

In recent years, there has been significant interest in 

leveraging deep learning for medical image 

enhancement, particularly in the reconstruction of 

corrupted or incomplete CT and MRI scans. Early 

work by Yang et al. introduced a U-Net-based 

inpainting technique for MRI restoration, 

emphasizing context-aware completion of missing 

regions; however, it struggled with accurately 

reconstructing large anatomical gaps [19]. Shin et al. 

employed Variational Autoencoders (VAEs) to 

generate lesion-like structures in CT data, offering a 

probabilistic approach for medical image synthesis, 

though the realism of outputs was limited by the 

model's generative capacity [17]. 

Armanious et al. proposed MedGAN, a GAN-based 

architecture designed for high-quality reconstruction 
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of CT and MRI scans, achieving global structural 

fidelity, but their model exhibited limitations in local 

detail accuracy [1]. Chartsias et al. explored cross-

modality synthesis using GANs for CT-to-MRI 

image translation, enabling reconstruction of missing 

modality data, although risks of modality mismatch 

and anatomical inconsistency persisted [12]. Wang et 

al. later introduced an attention-guided GAN 

framework to improve region-specific detail 

reconstruction in MRIs, but the computational burden 

of this method hindered its deployment in low-

resource environments [18]. 

Generative adversarial networks (GANs) have been a 

cornerstone of modern image synthesis. Goodfellow 

et al. initially proposed GANs for learning generative 

distributions through adversarial training, laying the 

groundwork for many subsequent medical imaging 

applications [4]. In another study, Guibas et al. 

demonstrated the utility of dual GANs to create 

synthetic medical images for training and 

augmentation, addressing data scarcity but 

introducing concerns about anatomical correctness 

[5]. 

Chen et al. investigated the application of GANs for 

unsupervised lesion detection, where generative 

models could isolate anomalies by modeling only 

healthy anatomical structures, showing promise for 

anomaly localization in incomplete images [2]. Dar et 

al. developed a conditional GAN framework to 

generate synthetic contrasts in multi-contrast MRI, 

offering cross-sequence restoration but relying 

heavily on accurate paired training data [3]. 

To address fundamental limitations in reconstructive 

realism, Kingma and Welling proposed the VAE 

framework, allowing structured latent space learning 

for generative modeling in a probabilistic context [9]. 

Their contribution has had lasting influence on 

subsequent image reconstruction approaches. Jin et 

al. also introduced deep convolutional networks to 

solve inverse problems in imaging, such as denoising 

and reconstruction from undersampled data, 

contributing methods relevant to image restoration 

pipelines [8]. 

The field further advanced with the work of Litjens et 

al., who provided a comprehensive survey of deep 

learning in medical image analysis, highlighting both 

the diagnostic and generative capacities of AI across 

imaging modalities [10]. Mahmood et al. applied 

unsupervised domain adaptation via adversarial 

training to bridge synthetic and real medical images, 

enhancing realism but still requiring domain-specific 

adjustments for effective deployment [11]. 

Nie et al. introduced context-aware GANs for 

medical image synthesis, explicitly conditioning the 

generator on anatomical surroundings, which helped 

maintain structural coherence in reconstructions but 

did not optimize for edge deployment scenarios [12]. 

Oktay et al.'s work on Attention U-Net demonstrated 

how learning spatial attention improved feature 

localization for pancreas segmentation, an idea that 

also informs attention-enhanced generative models 

for reconstruction [13]. 

Pathak et al. pioneered the concept of context 

encoders for image inpainting, using deep 

convolutional networks to predict missing regions, a 

foundational idea for many medical image restoration 

architectures [14]. Ronneberger et al. developed the 

U-Net architecture, widely adopted for biomedical 

image segmentation and now often integrated into 

generative pipelines for better localization and 

boundary preservation [15]. 

Sharma et al. applied GANs for brain lesion detection 

and segmentation, highlighting the dual role of 

generative models in restoration and diagnostic 

assistance [16]. He et al.'s introduction of ResNet 

added robustness to deeper architectures, indirectly 

supporting stability in multi-layer generative 

networks applied to image restoration [6]. 

Isola et al. proposed conditional adversarial networks 

for image-to-image translation, facilitating end-to-

end synthesis tasks such as translating low-quality to 

high-quality medical scans [7]. Yi et al. offered a 

comprehensive review on the use of GANs in 

medical imaging, documenting the trade-offs 

between generative fidelity, anatomical accuracy, and 

computational demand [20]. 

Yu et al. addressed edge-awareness in cross-modality 

MRI synthesis using GANs, enabling structurally 

sensitive reconstructions, though their method 

required substantial computational resources [21]. 

Zhang et al. proposed a task-driven generative model 

for domain adaptation, which indirectly supports 

reconstruction by enabling generalization across 

diverse clinical settings [22]. 

Zhou et al. introduced Hi-Net, a hybrid fusion model 

for multi-modal MRI synthesis that outperformed 
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traditional architectures in synthesizing plausible 

cross-modality images but was not optimized for 

low-resource environments [23]. Zhu et al. 

contributed CycleGANs for unpaired image 

translation, a concept applicable to restoring damaged 

medical images without needing paired training data 

[24]. 

Zbontar et al. presented the fastMRI dataset and 

benchmarks for accelerated MRI reconstruction, a 

valuable resource that has catalyzed research in 

image enhancement under undersampling and 

corruption scenarios [25]. Finally, Wang et al. 

proposed the Structural Similarity Index (SSIM), now 

a widely used metric to evaluate perceptual image 

quality in medical image restoration tasks [18]. 

These studies collectively illustrate the rich landscape 

of generative modeling for medical image 

enhancement and synthesis. While the advancements 

in GANs, VAEs, attention mechanisms, and domain 

adaptation have significantly improved image 

reconstruction capabilities, most existing approaches 

are not explicitly optimized for real-time, low-

resource clinical deployment. This gap forms the 

foundation for the present work, where we aim to 

develop a lightweight, hybrid generative model 

capable of reconstructing corrupted CT and MRI 

images efficiently, while preserving anatomical 

fidelity and clinical usability in resource-limited 

healthcare settings. 

3. Proposed Methodology 

3.1 System Overview 

The proposed generative reconstruction framework is 

designed to intelligently restore damaged CT and 

MRI images by combining the strengths of three 

powerful components: a Variational Autoencoder 

(VAE) backbone, a Generative Adversarial Network 

(GAN) head, and an attention-guided enhancement 

module. The VAE forms the core of the model by 

learning a compact latent representation of 

anatomical structures, thereby capturing the global 

shape and semantic information present in medical 

images. On top of this backbone, a GAN module is 

introduced to refine the reconstructed images and 

enhance visual and textural realism. This adversarial 

component ensures that the output is not only 

structurally accurate but also visually 

indistinguishable from real, undamaged scans. To 

further improve region-specific restoration, an 

attention mechanism is integrated into the 

architecture. This module guides the model to focus 

more effectively on the corrupted or missing regions, 

ensuring that both subtle and significant defects are 

addressed with high fidelity during reconstruction. 

3.2 Data Preprocessing 

For training and evaluation, the framework leverages 

publicly available and annotated medical image 

datasets from repositories such as the Brain Tumor 

Segmentation (BraTS) Challenge and The Cancer 

Imaging Archive (TCIA). These datasets provide a 

rich variety of CT and MRI scans, including different 

anatomical regions, pathologies, and imaging 

protocols. To simulate real-world corruption 

scenarios commonly observed in low-resource 

clinical settings, synthetic degradations are applied to 

the clean input data. These include random 

occlusions (e.g., blacked-out regions), additive 

Gaussian noise, motion blur, partial slice removal, 

and intensity clipping. By training the model on these 

augmented examples, the system learns to generalize 

to a broad spectrum of degradation patterns, making 

it robust to both common and rare imaging artifacts 

encountered in under-resourced hospitals. 

3.3 Architecture 

The architecture is organized into three primary 

modules: an encoder, a decoder, and a discriminator. 

The encoder processes the damaged image and 

compresses it into a low-dimensional latent 

representation that captures its global structure. This 

latent code is then passed to the decoder, which 

attempts to reconstruct the complete, undamaged 

version of the image. The decoder benefits from both 

the latent information and the attention cues to 

regenerate the missing or corrupted areas with 

structural integrity. Simultaneously, a discriminator 

network is employed to assess the realism of the 

generated output. During training, the generator and 

discriminator are optimized in opposition: the 

generator aims to produce images that can fool the 

discriminator, while the discriminator learns to 

distinguish real images from generated ones. 

To ensure that the reconstructed images are both 

quantitatively accurate and perceptually convincing, 

a composite loss function is used during training. 

This loss includes a reconstruction term that 

penalizes differences between the original and 

restored images, an adversarial loss from the GAN 
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that encourages realism, and a perceptual loss that 

captures high-level semantic consistency using a pre-

trained neural network. This combination of loss 

components ensures that the model does not simply 

fill in missing regions with average textures but 

instead learns to generate anatomically plausible 

structures that conform to real-world medical image 

distributions. 

3.4 Training Protocol 

The model is trained using the Adam optimizer, 

which is well-suited for stabilizing deep generative 

training dynamics. Specific hyperparameters such as 

learning rates and momentum terms are carefully 

chosen to balance convergence speed and training 

stability. A mini-batch size of 32 images is used for 

each iteration to ensure efficient training without 

overwhelming the available computational resources. 

The model is trained for 100 epochs, allowing 

sufficient time for the generator and discriminator to 

co-evolve and for the model to learn detailed 

structural priors. Throughout training, regular 

validation on a held-out dataset is performed to 

monitor reconstruction accuracy and prevent 

overfitting. Additionally, techniques such as data 

augmentation and dropout are used to enhance the 

model’s generalizability to unseen data. 

 
Fig 1: Proposed Flow Chart 

To complement the methodology description, Fig. 1 

presents a schematic overview of the entire 

generative reconstruction pipeline. It visually 

encapsulates the flow from input damaged images, 

through data preprocessing, VAE encoding and 

decoding, attention-guided enhancement, and GAN 

refinement, culminating in the final reconstructed 

medical image. The discriminator module operates in 

parallel to evaluate the realism of generated outputs 

and provides feedback that guides the learning 

process. 

4. Results and Analysis 

4.1 Evaluation Metrics 

To comprehensively assess the effectiveness of the 

proposed generative reconstruction framework, we 

utilize a combination of both quantitative and expert-

driven evaluation metrics. These include Peak Signal-

to-Noise Ratio (PSNR), which measures the pixel-

wise fidelity of the reconstructed image relative to 

the ground truth, and the Structural Similarity Index 

(SSIM), which captures perceptual similarity by 

considering luminance, contrast, and structural 

alignment. Additionally, the Fréchet Inception 

Distance (FID) is used to evaluate the realism of the 
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generated images in comparison to real images based 

on feature distributions extracted from a pretrained 

network. To incorporate clinical relevance, we also 

introduce the Radiologist Grading Score (RGS), a 

subjective quality assessment rated by certified 

radiologists on a 5-point Likert scale, focusing on 

diagnostic usability, artifact reduction, and structural 

integrity. 

The performance of our proposed method is 

benchmarked against several baselines: a standard U-

Net reconstruction model, a VAE-only model, and a 

standalone GAN model. The U-Net baseline achieved 

a PSNR of 24.3 dB, an SSIM of 0.77, an FID score of 

82.1, and an RGS of 3.1, indicating limited 

restoration capabilities for severely corrupted inputs. 

The VAE-only configuration showed improvement 

across metrics with a PSNR of 26.5 dB, SSIM of 

0.81, FID of 65.3, and RGS of 3.5, primarily due to 

its ability to model global anatomical priors. The 

GAN-only model further advanced the perceptual 

quality with a PSNR of 28.1 dB, SSIM of 0.84, FID 

of 48.7, and RGS of 4.0, highlighting its strength in 

producing visually realistic textures. Our proposed 

hybrid framework, which combines VAE, GAN, and 

an attention mechanism, outperformed all baselines 

with a PSNR of 31.2 dB, SSIM of 0.91, FID of 32.6, 

and an RGS of 4.6, reflecting superior reconstruction 

quality and clinical acceptability. 

 
4.2 Qualitative Results 

Beyond numerical evaluation, qualitative analysis 

provides further insights into the effectiveness of the 

proposed model in restoring detailed anatomical 

structures. As illustrated in Figure 3, we present side-

by-side comparisons of the ground truth, corrupted 

input, and reconstructed outputs across multiple 

cases. In scenarios with partial occlusions, motion 

blur, or slice dropouts, the baseline models often fail 

to recover fine details, resulting in blurry or artifact-

laden outputs. In contrast, our hybrid model 

demonstrates robust reconstruction capability, 

restoring subtle anatomical features such as cortical 

boundaries, tumor margins, and vascular structures. 

The attention mechanism plays a critical role in 

guiding the model to focus on heavily damaged 

regions, while the GAN module enhances texture 

sharpness. This combination enables high-fidelity 

restoration even under severe degradation, closely 

matching the original medical images in both visual 

and structural detail. 

 

5. Conclusion 

This paper presents a robust Generative AI-based 

framework for reconstructing damaged CT and MRI 

images, especially targeting under-resourced 

healthcare environments. By combining probabilistic 

modeling from VAEs and high-fidelity synthesis 
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from GANs, the proposed hybrid system restores 

imaging integrity without the need for re-scanning. 

Experimental validations demonstrate substantial 

improvements over prior methods across quantitative 

metrics and clinical evaluation. Future work will 

focus on federated training across multiple hospitals 

to preserve patient privacy while enhancing model 

generalization. 
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