Impact of Electronic Health Records and Automation on Pharmaceutical Management Efficiency: A Narrative Review

Subham Mandal*, Mukesh Kumar, Km. Bhumika, Shadab Ali, Iram Jahan, Suraj Mandal

Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India

Corresponding Author:

Subham Mandal

Email:

sk8006721807@gmail.com

Conflict of interest: NIL

Article History

Received: 03/01/2025 Accepted: 25/01/2025 Published: 12/02/2025

Abstract:

The integration of Electronic Health Records (EHRs) and automation in pharmaceutical management has significantly improved medication safety, inventory control, and workflow efficiency. EHRs facilitate realtime access to patient data, enabling healthcare providers to make informed decisions while reducing prescription errors and ensuring adherence to treatment protocols. Automation technologies, including computerized physician order entry (CPOE), robotic dispensing systems, and artificial intelligence (AI)-driven inventory management, have optimized pharmaceutical supply chains, minimized wastage, and enhanced medication dispensing accuracy. However, challenges such as interoperability issues, cybersecurity threats, high implementation costs, and resistance to technological adoption hinder the full potential of these advancements. Addressing these challenges requires the development of standardized data-sharing protocols, regulatory frameworks for AIdriven decision-making, and enhanced cybersecurity measures. Future advancements in AI, blockchain technology, and predictive analytics hold promise for further improving pharmaceutical management. This review explores the impact of EHRs and automation on pharmaceutical efficiency, highlighting both the benefits and limitations of these technologies while discussing strategies for their implementation in modern healthcare systems.

Keywords: Electronic Health Records, Automation, Pharmaceutical Management, Artificial Intelligence, Medication Safety, Interoperability

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1. Introduction

Pharmaceutical management is a fundamental aspect of healthcare systems, encompassing critical processes such as medication procurement, storage, dispensing, and monitoring. pharmaceutical management ensures the timely availability of medications, minimizes errors, and enhances patient safety. Over the past two decades, technological advancements, particularly Electronic Health Records (EHRs) and automation, have transformed pharmaceutical management, improved workflow efficiency and reducing manual errors (Akinyemi et al., 2022). EHRs integrate patient data into a centralized system, enabling real-time access to prescription histories, allergy records, and drug interactions, which facilitates better decision-making by healthcare providers (Bates et al., 2003). automation in pharmaceutical Furthermore, management, including robotic dispensing systems, computerized physician order entry (CPOE), and

artificial intelligence-driven inventory tracking, has streamlined medication administration improved supply chain management (Alsadoun et al., 2023). The implementation of EHRs has played a crucial role in enhancing communication between pharmacists, physicians, and other healthcare professionals. By reducing reliance on paper-based records and manual transcription, EHRs have minimized medication errors and improved adherence to treatment protocols (Johnston et al., 1994). Additionally, automation technologies, such as automated dispensing cabinets (ADCs) and machine learning-driven predictive analytics, have optimized inventory control, ensuring that essential medications are available while reducing wastage and costs (Bosman et al., 2003). Despite these advantages, challenges such as interoperability issues, data security concerns, and resistance to technological adoption remain significant barriers to fully realizing the potential of EHRs and automation

International Journal of Health Sciences and Engineering (IJHSE)
Website: https://ijhse.com

Website: https://ijhse.com ISSN: 3049-3811

Vol. 1, Issue 1, January-June, 2025

Page No.: 21-36

in pharmaceutical management (Zhang & Saltman, 2022).

This review examines the impact of EHRs and on pharmaceutical automation management efficiency, focusing on their role in improving medication safety, inventory management, and clinical decision-making. Additionally, it explores the challenges associated with their implementation and provides insights into future directions for healthcare enhancing digital solutions. synthesizing evidence from recent studies, this provide a comprehensive review aims to how these technological understanding of innovations contribute to optimizing pharmaceutical management in modern healthcare systems.

2. Electronic Health Records in Pharmaceutical Management

Electronic Records (EHRs) Health fundamentally transformed the landscape of pharmaceutical management by digitizing patient health information and integrating it into a centralized, accessible system. The adoption of EHRs has facilitated more efficient medication management by reducing human errors, enhancing clinical decision-making, and ensuring accurate documentation of patient health histories, prescriptions, and laboratory results (Akinyemi et al., 2022). The ability to access real-time patient data has proven invaluable in preventing medicationrelated errors, as physicians and pharmacists can instantly verify allergies, contraindications, and potential drug interactions before prescribing or dispensing medications (Bates et al., 2003). This shift from paper-based systems to digital recordkeeping has not only improved workflow efficiency but also minimized redundancy, ensuring that essential medical data is always available when needed. Furthermore, the integration computerized physician order entry (CPOE) systems within EHRs has significantly reduced transcription errors and misinterpretations of handwritten prescriptions, contributing to improved patient safety and optimized pharmaceutical management practices"(Johnston et al., 1994).

One of the key components of EHRs is their ability to facilitate automated clinical decision support systems (CDSS), which analyze patient data and provide real-time alerts to healthcare providers. These alerts can flag potential adverse drug reactions, suggest alternative treatments, and offer dosage recommendations based on patient-specific parameters such as age, weight, renal function, and existing comorbidities (Bosman et al., 2003). Such advanced functionalities have led to more evidence-based prescribing practices, reducing the risk of medication-related complications and hospital readmissions due to preventable adverse drug events. Additionally, EHRs contribute to enhanced care coordination by allowing multiple healthcare

providers, including physicians, nurses, and pharmacists, to access and update patient records simultaneously, ensuring that all parties involved in a patient's treatment plan have access to the most upto-date information (Ngusie et al., 2022). This real-time collaboration reduces communication gaps that previously led to prescription duplications, delays in medication administration, and discrepancies in patient records."

Despite the undeniable benefits of EHRs in pharmaceutical management, challenges related to system interoperability remain a major barrier to seamless healthcare integration (Zhang & Saltman, 2022). Many healthcare facilities and pharmacies operate on disparate EHR systems that lack standardized data formats, making it difficult for information to be shared efficiently across different platforms. This fragmentation poses risks to patient safety, as incomplete or inaccessible medical histories can lead to inappropriate prescribing and preventable medication errors (Alsadoun et al., 2023). Interoperability challenges also hinder the effectiveness of automated prescription verification systems, which rely on comprehensive patient data to flag contraindications and ensure safe medication dispensing. Furthermore, the integration of thirdparty applications such as pharmacy management systems and insurance verification platforms into EHR frameworks has proven complex, requiring significant investments in software development, regulatory compliance, and cybersecurity measures to protect patient data from breaches and unauthorized access (Babu & Thiyagarajan, 2023). Another significant limitation of EHRs in pharmaceutical management is the issue of data accuracy and completeness. While digital records offer the advantage of structured data storage, errors can still occur due to incomplete or outdated information being entered into the system. Inconsistent documentation practices across different healthcare facilities further exacerbate this issue, leading to discrepancies in medication histories that can result in suboptimal treatment decisions (William, 2021). Additionally, EHR usability concerns, such as cumbersome interfaces and time-consuming data entry requirements, have been reported as major barriers to adoption among healthcare providers (Boonstra et al., 2014). Physicians and pharmacists often experience alert fatigue due to excessive system notifications, leading to a desensitization that may cause critical medication warnings to be overlooked (Miller & Sim, 2004). Addressing these usability challenges is crucial to ensuring that EHRs enhance rather than hinder pharmaceutical management workflows.

The role of EHRs in inventory management is another critical aspect of pharmaceutical efficiency, as automated tracking of medication stock levels helps prevent shortages, minimize waste, and reduce

International Journal of Health Sciences and Engineering (IJHSE)

Website: https://iihse.com

Website: https://ijhse.com ISSN: 3049-3811

Vol. 1, Issue 1, January-June, 2025

Page No.: 21-36

financial losses for healthcare institutions (Bates et al., 2003). By integrating real-time inventory data with prescribing patterns, hospitals and pharmacies can optimize medication ordering processes and predict future demand trends more accurately. This predictive capability is particularly beneficial in managing high-cost specialty medications, ensuring that resources are allocated effectively and that essential drugs remain available for patient treatment (Da et al., 2021). Additionally, EHRdriven analytics enable pharmacies to identify patterns of prescription fraud and medication misuse, contributing to improved regulatory compliance and patient safety (Emeka & Lalit, 2020). However, the effectiveness of these inventory management capabilities is contingent on the seamless integration of EHR systems with automated pharmaceutical dispensing technologies, an area that continues to face significant implementation challenges due to technical constraints and financial limitations "(Ngusie et al.,

Cybersecurity and data privacy concerns are also major issues associated with the widespread use of EHRs in pharmaceutical management. As healthcare institutions transition to digital records, the risk of data breaches, hacking attempts, and unauthorized access to sensitive patient information has increased (Babu & Thiyagarajan, 2023). The healthcare sector remains a prime target for cybercriminals due to the high value of medical data on the black market, making it imperative for organizations to implement robust encryption protocols, access control measures, and continuous security monitoring to protect patient confidentiality (Zhang & Saltman, Furthermore, compliance with data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States and the General Data Protection Regulation (GDPR) in Europe adds another layer of complexity to EHR implementation, requiring

ongoing updates to security policies and system infrastructure (Alsadoun et al., 2023)."

Despite these challenges, the future of EHRs in pharmaceutical management remains promising, with advancements in artificial intelligence (AI), machine learning (ML), and blockchain technology poised to enhance data security, interoperability, and decision-support capabilities (William, 2021). AIpowered predictive analytics have the potential to further refine medication management by analyzing large datasets to identify emerging trends, optimize treatment protocols, and improve patient adherence to prescribed therapies (Bates et al., 2003). Similarly, blockchain-based solutions offer a decentralized approach to data sharing, ensuring tamper-proof medical records that enhance trust and transparency among healthcare providers, patients, and regulatory agencies (Babu & Thiyagarajan, 2023). However, widespread adoption of these emerging technologies will require coordinated efforts among policymakers, technology developers, and healthcare stakeholders to address technical, financial, and ethical challenges associated with their implementation (Ngusie et al., 2022).

EHRs have significantly improved pharmaceutical management by enhancing medication safety, streamlining inventory control, and facilitating realtime communication among healthcare providers. Their integration with automation technologies has further optimized prescribing accuracy, reduced medication errors, and improved overall healthcare efficiency. However, challenges related interoperability, data security, and system usability continue to hinder their full potential. As technology continues to evolve, addressing these challenges through regulatory reforms, enhanced system integration, and the adoption of emerging innovations such as AI and blockchain will be essential in ensuring that EHRs contribute to a safer and more efficient pharmaceutical management system.

Table 1: Impact of Electronic Health Records on Pharmaceutical Management

Key Aspect	Impact on	Benefits	Challenges	Future	Technologi	References
	Pharmaceutic			Directions	es Involved	
	al					
	Management					
Medication	Reduces	Real-time	Interoperabili	AI-driven	EHRs,	Akinyemi
Safety	prescription	access to	ty issues,	decision	CDSS,	et al.
	errors,	patient data,	inconsistent	support,	CPOE, AI,	(2022),
	improves	allergy	documentatio	enhanced	ML	Bates et al.
	adherence to	records	n	CPOE		(2003),
	treatment					Johnston et
	protocols					al. (1994)
Clinical	Provides	Enhances	Alert fatigue,	Improved	AI, ML,	Bosman et
Decision	automated	evidence-	false	AI-driven	CDSS,	al. (2003),
Support	alerts for drug	based	positives	analytics	EHRs	Ngusie et
(CDSS)	interactions	prescribing				al. (2022)
	and					

Vol. 1, Issue 1, January-June, 2025

						Page No.: 21-36
	contraindicatio ns					
Inventory	Tracks	Reduces	Integration	Blockchain	EHRs, AI-	Bates et al.
Management	medication	waste,	challenges	for	powered	(2003), Da
O	stock levels	optimizes	with	inventory	analytics,	et al.
	and prevents	inventory	automated	tracking	Blockchain	(2021)
	shortages	,	dispensing			,
Interoperabili	Enables	Reduces	Lack of	Adoption	EHR	Zhang &
ty	seamless data	redundancie	standardized	of FHIR,	integration	Saltman
•	exchange	s, improves	formats	improved	platforms,	(2022),
	between	coordinatio		data-	FHIR,	Alsadoun
	healthcare	n		sharing	Blockchain	et al.
	providers			protocols		(2023)
Cybersecurity	Ensures secure	Protects	Increased risk	Blockchain	Blockchain,	Babu &
& Data	handling of	sensitive	of hacking	-based	encryption	Thiyagaraja
Privacy	patient	data	and data	security,	protocols,	n (2023),
	medication		breaches	enhanced	HIPAA,	Alsadoun
	records			encryption	GDPR	et al.
						(2023)
Automation	Reduces	Enhances	High initial	AI-	CPOE,	Johnston et
in	transcription	accuracy,	costs,	enhanced	EHRs,	al. (1994),
Prescription	errors in	minimizes	resistance	automation	Automated	Boonstra et
	medication	manual	from	, improved	Prescription	al. (2014)
	orders	errors	healthcare	user	Systems	
			workers	interfaces		
AI in	Predicts	Optimizes	Ethical and	AI	AI, ML,	William
Pharmaceutic	medication	treatment,	liability	regulatory	Predictive	(2021),
al	demand,	improves	concerns	framework	Analytics	Emeka &
Management	enhances fraud	efficiency		s, policy		Lalit
	detection			developme		(2020)
				nt		

3. Automation in Pharmaceutical Management

The integration of automation in pharmaceutical management has significantly enhanced the efficiency, accuracy, and safety of medication dispensing, inventory control, and overall pharmacy operations. Automated systems, including robotic prescription-dispensing units, computerized physician order entry (CPOE), and barcode verification systems, have streamlined medication management processes, reducing human errors and optimizing workflow efficiency (Bosman et al., 2003). The implementation of automation in hospital and retail pharmacies has led to improved patient safety by minimizing the risks associated manual medication dispensing with administration. Automated dispensing cabinets (ADCs) have revolutionized hospital pharmacy operations by ensuring secure, efficient, and accurate medication storage and retrieval. These systems are designed to control access to medications, track dispensing activities in real time, and integrate with electronic health record (EHR) systems to provide seamless and transparent medication management (Alsadoun et al., 2023). Additionally, ADCs reduce medication retrieval times and improve adherence to prescription protocols, ensuring that the right medications are

administered to the right patients at the right times. The use of robotics in pharmaceutical dispensing has further minimized errors, particularly in high-volume settings where accuracy and efficiency are paramount. Robotic systems, equipped with artificial intelligence (AI) and machine learning (ML) algorithms, are capable of sorting, labeling, and dispensing medications with exceptional precision, reducing reliance on human intervention and enhancing overall operational efficiency (Da et al., 2021).

Another critical area of automation pharmaceutical management is inventory control and cost efficiency. Automated inventory management systems leverage real-time data analytics to track medication stock levels, predict demand trends, and prevent shortages or overstocking (Bates et al., 2003). By integrating with EHRs and pharmacy management software, these systems enable proactive medication procurement, reducing financial losses associated with expired or wasted drugs. Automated inventory tracking also enhances regulatory compliance by maintaining accurate records of medication usage, ensuring that pharmacies adhere to industry standards and guidelines. Cost savings are another major advantage of automation in pharmaceutical

International Journal of Health Sciences and Engineering (IJHSE) Website: https://ijhse.com ISSN: 3049-3811

Vol. 1, Issue 1, January-June, 2025 Page No.: 21-36

management, as automated systems reduce labor costs, minimize waste, and optimize resource allocation (Ngusie et al., 2022). AI-powered forecasting tools analyze historical prescription data and patient demographics to predict future medication demands, enabling pharmacies to optimize stock levels and reduce the likelihood of shortages (William, 2021). Additionally, automation in pharmaceutical supply chains improves logistics management by facilitating real-time tracking of medication shipments, ensuring timely deliveries, and reducing the risks of counterfeit or substandard drugs entering the market.

Artificial intelligence and machine learning have played a transformative role in optimizing management pharmaceutical by enhancing medication safety, improving prescription accuracy, and detecting potential fraud or non-compliance. AIdriven decision support systems analyze patient data, prescription patterns, and clinical guidelines to recommend the most effective treatment options, reducing the risks of adverse drug reactions and ensuring personalized medication regimens (Da et 2021). Machine learning algorithms continuously improve by learning from vast datasets, allowing them to identify emerging trends, detect anomalies, and flag potential medication errors before they occur. AI-powered chatbots and virtual assistants have also been integrated into pharmacy management systems, providing patient automated counseling, medication reminders, and adherence monitoring, thereby improving patient engagement and health outcomes (Zhang & Saltman, 2022). Furthermore, AI-driven fraud detection systems analyze prescription records and transaction histories to identify patterns indicative of prescription forgery, drug diversion, or overprescribing, contributing to enhanced regulatory oversight and medication safety"(Emeka & Lalit, 2020).

Despite the significant advantages of automation in pharmaceutical management, several challenges and limitations must be addressed to fully realize its potential. One of the primary concerns is data security and privacy, as automated systems rely heavily on digital records and cloud-based storage solutions. The increased reliance on digital platforms exposes pharmacies and healthcare institutions to cybersecurity threats, including data breaches, ransomware attacks, and unauthorized access to sensitive patient information (Babu & Thiyagarajan, 2023). Ensuring robust cybersecurity measures, including encryption, multi-factor authentication, and regular system audits, is crucial to maintaining patient confidentiality and protecting electronic health records from malicious actors. Additionally, interoperability issues continue to pose a major challenge, as many automated pharmaceutical systems operate on proprietary

software platforms that lack seamless integration with other healthcare IT systems (Zhang & Saltman, 2022)." The lack of standardized data exchange protocols can hinder communication between pharmacies, hospitals, and regulatory agencies, leading to inefficiencies in medication management and patient care. Addressing interoperability concerns requires industry-wide collaboration to develop standardized frameworks and protocols for data sharing and system integration.

Another major barrier to automation adoption is the need for extensive training and workforce adaptation. The transition from traditional manual processes to automated systems requires significant staff in training, investments software implementation, and workflow restructuring (Ngusie et al., 2022). Healthcare professionals, pharmacists, and technicians must be adequately trained to operate and troubleshoot automated systems, ensuring that they can effectively leverage the technology to improve patient care and operational efficiency. Resistance to change among healthcare professionals can also slow down the adoption of automation, as some may be hesitant to rely on technology for critical decision-making processes (Miller & Sim, 2004). Overcoming these challenges requires a comprehensive approach that includes ongoing education, hands-on training, and the development of user-friendly interfaces that enhance rather than complicate workflow efficiency. Ethical and legal considerations surrounding automation in pharmaceutical management must also be carefully addressed. Automated decisionmaking systems, particularly those powered by AI, raise concerns regarding accountability and liability in cases of prescription errors or adverse drug reactions (Emeka & Lalit, 2020). Clear regulatory frameworks must be established to define the responsibilities of healthcare providers, pharmacists, and technology developers in the event of an automation-related error. Furthermore, ethical concerns regarding data ownership and patient consent in AI-driven prescription systems must be considered, ensuring that patient rights and autonomy are protected in the digital healthcare landscape (Bates et al., 2003). Governments and regulatory agencies play a critical role in overseeing the implementation of automation in pharmaceutical management. ensuring that technological advancements align with patient safety standards, data protection regulations, and ethical guidelines. Looking ahead, the future of automation in pharmaceutical management is poised for further innovation, driven by advancements in AI, blockchain technology, and predictive analytics. Enhancing interoperability and standardization will be a key focus, with ongoing efforts to develop global data-sharing protocols that facilitate seamless integration across healthcare systems (Babu &

International Journal of Health Sciences and Engineering (IJHSE)

Website: https://ijhse.com ISSN: 3049-3811 Vol. 1, Issue 1, January-June, 2025

Page No.: 21-36

Thiyagarajan, 2023). Blockchain technology has emerged as a promising solution for ensuring the security, transparency, and immutability electronic health records, reducing the risks of data tampering and unauthorized access. AI applications in pharmaceutical management are expected to expand further, with machine learning algorithms continuing to refine medication personalized monitoring, treatment recommendations, and supply chain optimization (William, 2021). Additionally, regulatory frameworks must evolve to keep pace with technological advancements, ensuring that automation enhances rather than compromises patient safety, privacy, and ethical standards (Norris, 2002).

Automation has revolutionized pharmaceutical enhancing medication safety, management by

streamlining inventory control, and improving overall operational efficiency. The integration of robotic dispensing systems, AI-powered decision support tools, and automated inventory management solutions has significantly reduced medication errors, optimized resource allocation, and enhanced patient care outcomes. However, challenges related to data security, interoperability, workforce training, and ethical considerations must be carefully navigated to fully harness the potential of automation in pharmaceutical management. As technology continues to evolve, addressing these challenges through industry collaboration, regulatory oversight, and continuous innovation will be essential in shaping the future of pharmaceutical automation and ensuring its successful integration into modern healthcare systems.

Table 2: Impact of Automation on Pharmaceutical Management									
Key Aspect	Impact on	Benefits	Challenges	Future	Technologi	References			
	Pharmaceutic			Directions	es Involved				
	al								
	Management								
Automated	Enhances	Reduces	High	AI-powered	ADCs,	Bosman et			
Dispensing	medication	errors,	implementatio	dispensing,	Robotic	al. (2003),			
Systems	storage,	improves	n costs,	integration	Dispensing	Alsadoun et			
	retrieval, and	workflow	requires staff	with EHRs	Systems,	al. (2023)			
	dispensing	efficiency	training		AI, ML				
	accuracy								
Computerize	Automates	Enhances	Alert fatigue,	Improved AI	CPOE,	Johnston et			
d Physician	prescription	prescribing	resistance	decision-	EHRs,	al. (1994),			
Order Entry	orders,	accuracy,	from	support,	CDSS	Miller &			
(CPOE)	reducing	minimizes	healthcare	intuitive		Sim (2004)			
	transcription	delays	staff	interfaces					
	errors								
Inventory	Tracks	Prevents	Data	Blockchain-	AI, ML,	Bates et al.			
Management	medication	waste,	integration	based	Blockchain,	(2003), Da			
Automation	stock levels,	optimizes	issues,	inventory	Automated	et al. (2021)			
	predicts	procureme	requires high	tracking	Inventory				
	shortages	nt	maintenance		Systems				
Barcode	Reduces	Ensures	Scanner	AI-powered	Barcode	Bosman et			
Verification	medication	correct	malfunctions,	scanning,	Scanning,	al. (2003),			
Systems	administration	medication,	adoption	mobile	AI-based	Zhang &			
	errors	dose, and	challenges	barcode	Verification	Saltman			
		patient		solutions		(2022)			
Artificial	Improves	Personalize	Ethical	AI-driven	AI, ML,	Da et al.			
Intelligence	prescribing	d	concerns, data	regulatory	Predictive	(2021),			
in	accuracy,	treatment,	biases,	frameworks,	Analytics,	William			
Medication	detects fraud,	predictive	regulatory	improved	CDSS	(2021)			
Management	and enhances	analytics	uncertainty	data training					
	treatment								
	optimization								
Automation	Enhances	Real-time	Requires	Blockchain	AI, IoT,	Ngusie et			
in Supply	logistics,	tracking,	extensive	for	Blockchain,	al. (2022),			
Chain	tracks	reduces	system	transparent	RFID	Babu &			
Management	shipments,	delays	integration	supply chain		Thiyagaraja			
	prevents					n (2023)			
	counterfeit								
	drugs								

Vol. 1, Issue 1, January-June, 2025 Page No.: 21-36

						Page No.: 21-36
AI-Powered	Provides	Reduces	Limited	Enhanced	AI, NLP,	Zhang &
Chatbots &	automated	pharmacist	conversationa	NLP	Virtual	Saltman
Virtual	medication	workload,	l accuracy,	capabilities,	Assistants	(2022),
Assistants	counseling and	improves	regulatory	improved		Emeka &
	adherence	patient	barriers	patient		Lalit (2020)
	monitoring	education		engagement		
Regulatory	Ensures	Reduces	Complex	AI-driven	AI,	Bates et al.
Compliance	adherence to	manual	policy	regulatory	Blockchain,	(2003),
&	medication	compliance	requirements,	monitoring,	Compliance	Norris
Automation	safety and	workload,	slow adoption	automated	Software	(2002)
	industry	improves		reporting		
	guidelines	audit trails				
Cybersecurit	Protects	Prevents	Cyber threats,	Blockchain-	Blockchain,	Babu &
y in	sensitive	data	data privacy	based	Encryption	Thiyagaraja
Automated	patient and	breaches,	issues	encryption,	Protocols,	n (2023),
Systems	medication	ensures		multi-factor	HIPAA,	Alsadoun et
	data	regulatory		authenticatio	GDPR	al. (2023)
		compliance		n		
AI-Based	Identifies	Enhances	Algorithm	Improved AI	AI, ML, Big	Emeka &
Fraud	fraudulent	medication	biases,	fraud	Data	Lalit
Detection in	prescriptions	safety,	requires	detection	Analytics	(2020),
Prescription	and prevents	reduces	extensive data	models,		William
S	drug diversion	abuse	training	enhanced		(2021)
				predictive		
				analytics		

4. Challenges and Limitations

The integration of electronic health records (EHRs) and automation in pharmaceutical management has brought significant advancements in efficiency, medication safety, and workflow optimization, but it has also introduced a range of challenges and limitations that must be addressed for successful implementation. One of the most pressing concerns revolves around data security and patient privacy, as the digitization of medical records has made healthcare institutions increasingly vulnerable to cyber threats, data breaches, and unauthorized access to sensitive patient information"(Babu & Thiyagarajan, 2023). The centralization of health data within EHR systems presents an attractive target for hackers, who exploit vulnerabilities in hospital networks and pharmacy management software to steal or manipulate patient records. Cybersecurity incidents, such as ransomware attacks on hospitals, have become more frequent in recent years, leading to disruptions in medical services, financial losses, and risks to patient safety when access to critical medication information is compromised (Zhang & Saltman, 2022). The challenge of securing digital health data is compounded by the need for interoperability between different healthcare systems, as datasharing across multiple platforms introduces potential security gaps that hackers can exploit. Additionally, ensuring compliance with regulatory requirements, such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States or the General Data Protection

Regulation (GDPR) in Europe, adds another layer of complexity, as organizations must implement stringent security protocols, conduct regular audits, and invest in cybersecurity infrastructure to protect patient confidentiality while maintaining system functionality and efficiency (Alsadoun et al., 2023)."

Beyond security concerns, the successful adoption of EHRs and automation in pharmaceutical management is often hindered by barriers related to workforce training, resistance to change, and the financial burden of system implementation. The transition from paper-based records to digital systems requires significant investments in training healthcare professionals, pharmacists, administrative staff to effectively navigate and utilize EHR platforms, automated dispensing systems, and AI-powered decision support tools (Ngusie et al., 2022). Many healthcare institutions face challenges in allocating the necessary resources for training programs, particularly in low-resource settings where budget constraints limit the ability to upgrade outdated technology and implement new systems. Resistance to technological adoption among healthcare professionals further complicates the transition, as physicians, pharmacists, and nurses may be reluctant to rely on digital systems due to concerns about usability, increased workload, and potential errors associated with automation (Miller & Sim, 2004). Studies have shown that poorly designed EHR interfaces contribute to user frustration, alert fatigue, and workflow inefficiencies, ultimately leading to reduced

International Journal of Health Sciences and Engineering (IJHSE)
Website: https://ijhse.com

Vol. 1, Issue 1, January-June, 2025

nuary-June, 2025 Page No.: 21-36

adoption rates and lower satisfaction among healthcare providers (Johnston et al., 1994). To address these challenges, healthcare institutions must prioritize user-friendly system design, provide ongoing technical support, and implement gradual transition strategies that allow healthcare professionals to adapt to digital workflows without compromising patient care.

In addition to training and adoption barriers, ethical and legal considerations surrounding automated decision-making in pharmaceutical management pose significant challenges that require careful evaluation. The increasing reliance on artificial intelligence (AI) and machine learning (ML) algorithms medication for management, prescription verification, and clinical decision support raises critical questions regarding liability and accountability in cases of AI-driven prescription errors or adverse drug reactions (Emeka & Lalit, 2020). Unlike human pharmacists or physicians who are subject to medical licensing and ethical oversight, AI-driven systems operate based on complex algorithms that analyze vast amounts of patient data to recommend treatment plans. However, these algorithms are not infallible and can produce incorrect recommendations due to biases in training data, incomplete patient information, or unexpected clinical scenarios that deviate from standard guidelines (Bates et al., 2003). In such cases, determining legal responsibility becomes a challenge, as liability may fall on software developers, healthcare providers, or the institutions that implemented the AI-driven systems. The lack of standardized regulatory frameworks for AI in pharmaceutical management further complicates this issue, as existing medical malpractice laws were designed for human decision-making rather than algorithmic automation (William, Addressing these ethical and legal concerns requires policymakers, healthcare organizations, technology developers to establish clear guidelines on AI accountability, ensure transparency in algorithmic decision-making, and implement safeguards that allow human oversight in critical clinical decisions.

Another limitation of EHRs and automation in pharmaceutical management is the issue of system interoperability and data standardization. Many hospitals, pharmacies, and healthcare providers operate on different EHR platforms that lack uniform data-sharing protocols, leading to fragmented information systems that hinder seamless communication and coordination of patient care (Zhang & Saltman, 2022). The inability of different EHR systems to exchange data efficiently can result in medication discrepancies, prescription errors, and delays in treatment, particularly in cases where patients receive care from multiple providers across different healthcare

networks. This interoperability challenge extends to automated pharmaceutical systems, such as robotic dispensing units and inventory management platforms, which must be integrated with hospital EHRs to function effectively (Boonstra et al., 2014). Without standardized data exchange formats, pharmacists may face difficulties in accessing complete medication histories. leading suboptimal prescription decisions and increased risks of drug interactions. Efforts to enhance interoperability, such as the adoption of Fast Healthcare Interoperability Resources (FHIR) and blockchain technology, have been proposed as potential solutions to improve data integration and security in pharmaceutical management (Babu & However, widespread Thiyagarajan, 2023). implementation of these solutions requires significant investments, collaboration industry stakeholders, and regulatory support to ensure compliance with healthcare data-sharing standards.

The cost of implementing and maintaining EHR and automation systems remains a significant barrier, particularly for smaller healthcare institutions, independent pharmacies, and resource-limited settings. The initial investment in digital infrastructure, software licensing, procurement, and cybersecurity measures can be prohibitively expensive, making it difficult for organizations to justify the transition from traditional systems to fully automated workflows (Ngusie et al., 2022). Even after implementation, ongoing maintenance costs, software updates, and system upgrades require continued financial investment, adding to the overall burden on healthcare institutions. Additionally, hidden costs associated with downtime, system failures, and the need for additional IT support can further strain budgets, particularly in healthcare settings where cost-efficiency is a top priority (Miller & Sim, 2004). While proponents of EHRs and automation argue that long-term cost savings are achieved through reduced medication errors, improved efficiency, and optimized inventory management, the upfront financial requirements remain a significant deterrent for many institutions (Da et al., 2021). To address this issue, governments and healthcare policymakers must explore funding subsidies. and public-private partnerships that support the adoption of digital health technologies while ensuring equitable access to advanced pharmaceutical management solutions across diverse healthcare settings.

Despite these challenges, ongoing advancements in EHR interoperability, AI-driven automation, and cybersecurity solutions hold promise for overcoming many of the limitations associated with digital pharmaceutical management. Future efforts should focus on developing user-friendly EHR

Website: https://ijhse.com ISSN: 3049-3811

Vol. 1, Issue 1, January-June, 2025

Page No.: 21-36

systems with intuitive interfaces, improving AI transparency and accountability in prescription decision-making, and enhancing data security through blockchain encryption and multi-factor authentication protocols (William, 2021). Additionally, fostering industry-wide collaboration among healthcare providers, technology developers, and regulatory bodies is essential to establish standardized frameworks that facilitate seamless data exchange, streamline pharmaceutical

automation, and ensure the ethical implementation of AI in medication management (Bates et al., 2003). As digital transformation continues to reshape the healthcare landscape, addressing these challenges through targeted policy reforms, investments in healthcare IT infrastructure, and continuous research into emerging technologies will be crucial in maximizing the benefits of EHRs and automation while mitigating their associated risks.

Table 3: Challenges and Limitations of EHRs and Automation in Pharmaceutical Management

Challenge Pharmace tical Manageme nt		Challenges and	l					
Data Security & Privacy cyberattacks Privacy cyberattacks Adoption discrepancie s arrivation Sarrivator Systems Primarial Implement ation & Maintenance e Costs Primarial Maintenance e Costs Prical & Legal Concerns with A1 Primarial Data factor near the concerns with A1 Primarial Data factor near the concerns with A1 Primarial Clinical Data factor near the concerns with A1 Primarial Data factor near the concerns with A1 Primarial Alert & Proprint of Alert of Groverns and concerns with A1 Primarial Data factor near the concerns with A1 Primarial Clinical Clinical Clinical Primarial Decision Proprimated Clinical Primarial Clinical Primarial Decision Proprimated Clinician of Clinical Primarial Clinical Primaria Clinical Primaria Clinical Primaria Clinical Primaria Clinical Primarial Clinical Primaria Clin	Key	Impact on	Causes	Conseque	Proposed	Future	Technolo	Referenc
Data Increased Security & Privacy Privacy Privacy Risks Adata breaches, and unauthorize Ada dacess Interpora Adoption Adata data Adoption Adoption Barriers Increased Interpora Adoption Adoption Adoption Adoption Barriers Increased Inc	Challenge	Pharmaceu		nces	Solutions	Directions		es
Data Increased Security & Frivacy Privacy Privac		tical					Involved	
Data Security & Privacy risk of privacy Risks Adata Privacy Risks Adata breaches, and unauthorize and unauthorize adata, medication discrepancie s Pargmented bility Issues Barriers Blockchain corords, inadequate blility Issues Adoption discrepancie s Paramented bullet raining discrepancie s patient ation & Maintenance e Costs Al-driven ation & Al-driven		Manageme						
Privacy cyberatacks Adata Adaption Alloriven Aldriven		nt						
Privacy cyberatacks Adata Adaption Alloriven Aldriven	Data	Increased	Centralize	Potential	Implemen	Blockchain	Blockchai	Babu &
Privacy Risks Aisks Aisk								
Risks cheaches, and breaches, and unauthorize dacess patient vity financial protocols dacess patient vity financial protocols dacess patient vity financial protocols dacess patient vity financial actor authentica data standardiza data, medication discrepancie s patient vity financial financial prescribing discrepancie patient vity financial medication data withentica data of FHIR, and detection Global health IT standardiza tion in medication discrepancie patient vity financial medication data of FHIR, and discrepancie patient vity financial medication discrepancie patient vity financial medication data vity financial medication data vity financial medication discrepancie patient vity financial medication data vity financial medication on in medication data vity financial medication data vity financial medication on in tools vity financial medication data vity financial medication on or Full medication on in tools vity financial medication on or financial medication on in tools vity financial medication on or financial medication on or financial medication or vity financial patient vity financial medication or financial medication or vity financial medicat	•		-				· ·	
Breaches, and and ity interest and unauthorize and unauthorize and unauthorize and unauthorize and access Lack of bility Issues Fragmented data, medication discrepancie Platforms Fragmented data Fragmented data, medication discrepancie Platforms Fragmented data Fragmented data Fragmented data Fragmented data, medication discrepancie Platforms Fragmented data, medication discrepancie Platforms Fragmented data Fragmented dat		•				-	• •	
Interopera bility Issues Fragmented bility Issues Healthcare data, medication EHR discrepancie Sarriers Barriers Fragmented bility Issues Fragmented data, medication EHR discrepancie Sarriers Fragmented bility Issues Fragmented data, tion in medication EHR discrepancie Saltman EHR discrepancie Saltman Guoz2), Fraining & Adoption discrepancie Saltman Guoz2), Fraining & Adoption Fragmented training Fragmented training Fragmented data Saltman Guoz2), Fraining & Adoption Fragmented training Fragmented training Fragmented data Saltman Guoz2), Fragmented data Saltman Guoz2), Fragmented data Saltman Guoz2), Fragmented data Saltman Guoz2), Guoza Gramman Guoza Guoz	NISKS			_				
Interopera Fragmented bility Issues Fragmented data, tion in medication discrepancie Fatgue in Clinical Preservity Fragmented bility Issues Fragmented bility Issues Fragmented data, tion in medication of FHIR, back of to digital training curve for issues washility curve of new systems Fragmented tools, steep learning curve for new systems Fragmented adoption, and to such a staff or training, curve for issues washility in automation automation failures Fragmented final training curve for issues washility in automation automation failures Fragmented failures Fragmented failures Fragmented final training, curve for issues washility in automation of failures Fragmented final training doption, and fire final training, curve for issues washility in automation automation of final training doption, and fire final training, curve fire indivise and option in the designs Fragmented fire intuitive and option, and fire intuitive adoption, and fire intuitive partnershi policicure of the fire intuitive partnershi partnershi partnershi partnershi partnershi partnershi partnershi pare								_
Interopera Fragmented Lack of healthcare Saturan						detection	GDPR	
Training & Adoption discrepancie standardiza data, medication discrepancie s supportionolos susuality curve for new systems High Implement ation & Adoption & Al-Implement ation & Al-Implement institutions Lack of Implement ation & Al-Implement institutions Lack of Implement ation & Al-Implement ation & Al-Implement ation & Al-Implement institutions Lack of Implement ation & Al-Implement institutions Lack of Implement ation & Al-Implement ation & Al-Implement institutions Lack of Implement ation & Al-Implement ation & Al-Implement institutions Lack of Implement institutions Lack of Impl		unauthorize	protocols	penalties	authentica			(2022)
bility Issueshealthcare data, ata, medication data, medication discrepancie s stion in in integratio, medication discrepancie s sstandardiza tion in sharing, platformsof FHIR, integratio standardiza tion, n.AI, (2022), tion, cross-platform compatibili toolsBlockchai n, AI, (2022), tion, cross-platform based et al. (2023)Training & Adoption BarriersResistance to digital curve for new systemsLack of learning curve for new systemsLimited adoption, infrastruct ation & smaller institutionsContinuou adoption, s staff rirendly systemAI-driven powered training platforms, suser system interface developme ntAI-driven training platforms, suspport, intuitive some interface developme ntEHR stance tal. m, AI, (2022), Alsadoun based et al. (2023)High Implement ation & Maintenanc e CostsFinancial burden on sinfrastruct ure costs, frequent institutionsLimited adoption, nt ure costs, frequent upgradesCovernme adoption, private upgradesAI-driven cost- et al. (2021), adoption, nt cost- public- private upgradesAI-driven cost- production prescription automation failuresLack of regulatory framework larm risks algorithm automation failuresLegal covernal prescription on fifications notifications notifications optimized notifications optimized in notifications optimized risk of galert alloridation clinical preduceAI-based AI, MIL, alert prioritization integration standardiza tion of EHRs with AI integration in alloridation standardiza to integrate and plantary integrated in training adoption, increased user increased user increased user increased training, user systemsAI intuitive standing user support, intuitive support, intuitive support, intuitive support, intuitive support, intuitive subport, intuitive subport, intuitive subport, intuitive subport, intuitive subport, intuitive subport, intuitive		d access			tion			
data, medication discrepancie EHR platforms EHR platforms EHR platforms errors medication discrepancie s medication disprisation discrepancie s medication disprisation disprisation disprisation discrepancie s medication disprisation disprisation disprisation disprisation medication disprisation disprisation disprisation disprisation medication disprisation disprisation disprisation disprisation medication disprisation disprisation disprisation medication disprisation disprisation disprisation disprisation medication disprisation disprisation disprisation disprisation medication disprisation disprisation disprisation medication disprisation disprisation disprisation disprisation medication disprisation disprisation disprisation disprisation	Interopera	Fragmented	Lack of	Inefficient	Adoption	Global	FHIR,	Zhang &
medication discrepancie s	bility Issues	healthcare	standardiza	data	of FHIR,	health IT	Blockchai	Saltman
medication discrepancie s medication divien compatibili tools tools ty Mortload, user support, similation, support, similation, support, similation, support, similation, intuitive simulation interface developme nt medication divien compatibili tools messure support, similation, support, simi	-	data,	tion in	sharing,	integratio	standardiza	n, AI,	(2022),
discrepancie s platforms s errors driven compatibili tools ty Training & Resistance to digital training tools, steep learning curve for new systems High Implement ation & Maintenance e Costs Maintenance e Costs Ethical & Al-driven to digital training usability curve for new systems Ethical & Legal Concerns with Al unclear fiailures Alert Excessive Poorly Increased Decision Adert Ethical & Lecksof shope in the alter frailures Adert Etagein Clinical Platforms driven driven compatibili tools ty Aldriven compatibili tools ty With Al driven compatibili tools ty Alt continuou Al- Al-driven training user user friendly intuitive simulatio sim (2022), simulatio sim (2022), simulatio sim (2022), simulatio sim (2004) Brownkload, user friendly intuitive simulatio sim (2004) Sim (2021), altering workload, user friendly intuitive simulatio sim (2004) Brownkload, user friend		,		_				
Training & Resistance to digital training tools, steep learning curve for new systems High Implement ation & Maintenanc e Costs Ethical & Al-driven thealthcare institutions with AI Legal Concerns with AI Legal Concerns with AI Ethical & Al-driven failures Alert Excessive Roll and automation failures Fatigue in Clinicial Decision Adoption to digital training adoption, training, user usability training, user support, increased training, user support, simulatio suser friendly increased developme al. Q2021), workload, user friendly straining, user user support, intuitive simulatio system developme and training, user support, intuitive simulatio infrastruct adoption, adoption nt cost- cost- cost- cost- developme and training, user developme and training, user support, intuitive simulatio infrastruct adoption, nt cost- c			platforms			· · · · · · · · · · · · · · · · · · ·		
Training & Adoption Barriers Baller Barriers Barriers Barriers Baller Baller Barriers Baller Baller Barriers Baller		1	1			-		
Training & Adoption Barriers Lack of to digital tools, steep tools, steep curve for new systems EThical & Legal Conterns with AI Legal Conterns with AI Legal Conterns with AI Lack of failures		5				-	21116	(2020)
Adoption Barriersto digital tools, steep learning curve for new systemstraining resources, usability increased workload, user friendly systems staff training, user friendly systempowered user friendly system systemtraining platforms, support, intuitive intuitive simulatio interface developmeEHR simulatio n developmeMiller & EHR simulatio n developmeHigh Implement ation & Maintenanc e CostsFinancial burden on smaller institutionsHigh infrastruct delays in trecountly updatesLimited adoption, delays in technologi upgradesGovernme subsidies, patient itechnologi upgradesAI-driven pos partnershi psCloud cost efficiency g, SaaS models, efficiency g, SaaS models, cloud- Cost cloud- Cost (2014)EHR, cet al. (2014)Ethical & Legal Concerns with AIAI-driven prescription prescription errors, liability in automation failuresLack of regulatory biasesLegal disputes, patient harm risksEstablishi ng clear malpractice cy protocolsAI-specific malpractice regulationsAI Explainab Explainab Bates et al. (2003)Alert Fatigue in Clinical DecisionExcessive reduce alertPoorly notifications salgorithm missed risk of missed algorithm missed algorithm missed spitchical spitchical spitchical spitchical spitchical spitchical spitchical spitchical spitchical spitchical spitchical spitchical spitchical <br< th=""><th>Training &</th><th>Resistance</th><th>Lack of</th><th>Slow</th><th></th><th></th><th>A L-driven</th><th>Nausie et</th></br<>	Training &	Resistance	Lack of	Slow			A L-driven	Nausie et
Barriers tools, steep learning curve for new systems user new systems learning curve for new systems learning curve firendly system learning learni								_
learning curve for new systems learning curve for new system learning curve for new system learning curve firiendly learning curve firiendly learning curve firiendly learning curve for interface learning curve for interface learning curve for learning curve interface learning curve for learning curve firiendly learning cost- new cost- learning cost- learning cost- learning curve developme learning cost- learning cost- learning curve developme learning cost- learning cost- learning curve developme learning cost- learning cost	-		_				_	
Curve for new systems Sissues User frustration Sim (2004)	Darriers	-			_		•	
Thigh Financial High Limited adoption, aton & Cost		_	•	-				
Systems High Financial High burden on ation & maller healthcare healthcare institutions maller Lack of Concerns with AI Lack of failures			issues		-		simulatio	
High Implement ation & Beath CostsFinancial burden on smaller healthcare institutionsHigh infrastruct ure costs, frequent updatesLimited adoption, delays in technologi upgradesGovernme subsidies, public- public- partnershi psAI-driven cloud- based EHR models, partnershi psCost cloud- based EHR madoption models, partnershi psPredictio adoption malpractice ce, ce, institutionsEthical & Legal Concerns with AIAI-driven prescription errors, liability in automation failuresLack of regulatory framework biasesLegal disputes, patient harm risksEstablishi ng clear accountab harm risksAI-specific ng clear malpractice ility laws, regulationsAI Governan ce, ethical AI Ethical AI Framewor harm risksAlertExcessive Fatigue in Clinical DecisionPoorly optimized alert protocolsIncreased risk of missed algorithm risk of algorithm risk of missed algorithm algorithm risk of prioritizatio systems,AI-based algorithm prioritizatio s, filtering n, real-timeAI, ML, FactorsJohnston Human Factors				frustration	-		n	(2004)
High Implement ation & Maintenanc e CostsFinancial burden on smaller healthcare institutionsHigh infrastruct ure costs, frequent updatesLimited adoption, technologi upgradesGovernme nt subsidies, public- partnershi ng partnershiAI-driven cloud- based EHR models, partnershi adoptionCost predictio models, partnershiCloud- cloud- based EHR predictio madoptionDe et al.Ethical & Legal Concerns with AIAI-driven prescription errors, framework liability in automation failuresLack of regulatory framework biasesLegal disputes, patient harm risksEstablishi ng clear accountab ility laws, transparen cy protocolsAI malpractice ece, Framewor ksEmeka & Governan Explainab Explainab Ethical AI Framewor ksAlert Fatigue in Clinical DecisionExcessive notifications clinicianPoorly optimized alertIncreased risk of alert missed criticalOptimizin g alert algorithm s, filteringAI-based alert prioritizatio prioritizatio Human prioritizatio Human FactorsJohnston et al.		systems			designs	developme		
Implement ation & ation & maller ation & Maintenanc e Costsburden on smaller healthcare institutionsinfrastruct ure costs, delays in technologi updatesnt subsidies, public- efficiency public- public- partnershicost cloud- based EHR adoption n AICost (2014)Ethical & Legal Concerns with AIAI-driven liability in automation FailuresLack of failuresLegal liability in automation failuresLegal continuesExamplement subsidies, efficiency public- public- private partnershiEstablishi automation optimized risk of Clinical prescriptionsAI-driven prescription regulatory patient automation failuresLegal disputes, patient protocolsEstablishi material prescription automation failuresAI libility laws, patient protocolsAI le AI, al. (2003)Alert Fatigue in Clinical DecisionExcessive reduce clinicianPoorly optimized alert preduce clinicianIncreased optimized alert protocolsOptimizin prioritizatio prioritizatio prioritizatio nreal-timeAI-based clinician prioritizatio prioritizatio prioritizatio nreal-timeAI, ML, prioritizatio prioritizatio prioritizatio prioritizatio prioritizatio prioritizatio prioritizatio prioritizatio spatial prioritizatio prioritizati								
ation & Maintenanc e Costssmaller healthcare institutionsure costs, frequent frequent updatesdelays in technologi technologi upgradessubsidies, public-public- private partnershi psefficiency models, cloud- cloud-based EHR predictio madoptiong, SaaS EHR, et al.Ethical & Legal Legal Concerns with AIAI-driven prescription errors, framework liability in automation failuresLack of regulatory framework biasesLegal disputes, patient patientEstablishi accountab harm risksAI-specific medical ng clear patientAI medical accountab ility laws, regulationsExplainab Explainab Ethical AI Framewor Ethical AIBates et al. (2020), ExplainabAlertExcessive Fatigue in Clinical DecisionPoorly optimized alertIncreased risk of missed criticalOptimizin algorithm risk of eriticalAI-based algorithm prioritizatio n, real-timeAI, ML, FactorsJohnston et al.	High	Financial	High	Limited	Governme	AI-driven	Cloud	Da et al.
Maintenanc e Costshealthcare institutionsfrequent updatestechnologi cal upgradespublic- private partnershi psmodels, cloud- based EHR partnershiEHR, Cost predictio n AIet al. (2014)Ethical & Legal Concerns with AIAI-driven prescription errors, liability in automation failuresLack of regulatory framework algorithm biasesLegal disputes, patient harm risksEstablishi accountab ility laws, transparen cy protocolsAI ergulations regulationsAI Explainab Explainab Explainab al. (2003)Alert Fatigue in Clinical DecisionExcessive reduce alertPoorly optimized alertIncreased risk of missed criticalOptimizin algorithm risk of algorithm systems,AI-based algorithm prioritizatio s, filteringAI, ML, n, real-timeJohnston Factors	Implement	burden on	infrastruct	adoption,	nt	cost-	Computin	(2021),
Maintenanc e Costshealthcare institutionsfrequent updatestechnologi cal upgradespublic- private partnershi psmodels, cloud- based EHR partnershiEHR, Cost predictio n AIet al. (2014)Ethical & Legal Concerns with AIAI-driven prescription errors, liability in automation failuresLack of regulatory framework algorithm biasesLegal disputes, patient harm risksEstablishi accountab ility laws, transparen cy protocolsAI ergulations regulationsAI Explainab Explainab Explainab al. (2003)Alert Fatigue in Clinical DecisionExcessive reduce alertPoorly optimized alertIncreased risk of missed criticalOptimizin algorithm risk of algorithm systems,AI-based algorithm prioritizatio s, filteringAI, ML, n, real-timeJohnston Factors	ation &	smaller	ure costs,	delays in	subsidies,	efficiency	g, SaaS	Boonstra
e Costsinstitutionsupdatescal upgradesprivate partnershi pscloud-based EHR adoptionCost Predictio n AIEthical & Legal Concerns with AIAI-driven prescription errors, liability in automation failuresLack of regulatory framework algorithm biasesLegal disputes, patient harm risksEstablishi accountab ility laws, regulationsAI ergulations regulations accountab ility laws, regulationsAI ergulations Explainab Ethical AI Framewor ksAlert Fatigue in Clinical DecisionExcessive reduce alertPoorly optimized alertIncreased risk of missed alert algorithm systems,Optimizin algorithm risk of algorithm systems,AI-based alert algorithm s, filteringAI-based alert prioritizatio n, real-timeAI, ML, CDSS, Human FactorsJohnston (1994), Miller &	Maintenanc	healthcare	frequent		public-			et al.
Ethical & Legal Concerns with AIAI-driven prescription failuresLack of regulatory of famework automation failuresLegal content of failuresLegal concerns of famework automation of failuresLegal concerns of failuresEstablishi neating failuresAI concerns of famework allowed failuresEstablishi neating failuresAI concerns of famework accountab failuresAI concerns of famework accountab failuresBates et al. (2003)Alert Fatigue in ClinicalExcessive failuresPoorly optimized alert failuresIncreased for failures alert for failuresOptimizin failuresAI-based failures for failuresAI, ML, optimizin failuresAI-based failuresAI-based failuresAI, ML, optimizin failuresAI-based failure	e Costs	institutions	-		-			(2014)
Ethical & AI-driven Legal Concerns with AIAI-driven prescription errors, liability in automation Fatigue inLack of regulatory errors, liability in automation ClinicalLegal disputes, regulations harm risks errors, liability in automation failuresLegal disputes, regulations harm risks ility laws, regulations transparen cy protocolsAI errors, liability laws, regulations errors, liability in automation failuresBates et al. (2003) Ethical AI Framewor protocolsAlertExcessive rotifications ClinicianPoorly optimized alertIncreased risk of missed algorithm s, filteringAI-based alert prioritizatio prioritizatio n, real-timeAI, ML, CDSS, Human FactorsJohnston et al.			1	ungrades	-		Predictio	,
Ethical & Legal ConcernsAI-driven prescription errors, with AILack of prescription errors, liability in automation failuresLack of regulatory framework algorithm biasesLegal disputes, patient harm risksEstablishi ng clear accountab ility laws, transparen cy protocolsAI equilations regulations Explainab Explainab Explainab Explainab Explainab Explainab Explainab Explainab Explainab Explainab Explainab Explainab Explainab Explainab I call (2003)Alert Fatigue in Clinical DecisionExcessive reduce alertPoorly optimized alertIncreased risk of missed risk of missed criticalOptimizin g alert algorithm s, filteringAI-based alert prioritizatio n, real-timeAI, ML, CDSS, Human FactorsJohnston et al.				18	-			
Legal Concernsprescription errors, with AIregulatory framework unclear liability in automation failuresregulatory framework s, algorithm biasesdisputes, patient harm risksng clear accountab ility laws, transparen cy protocolsmedical malpractice regulationsGovernan exp Fatigue inLalit (2020), Explainab le AI, Framewor ksAlertExcessive notifications Clinical DecisionPoorly optimized alertIncreased risk of missed criticalOptimizin g alert algorithm s, filteringAI-based alertAI, ML, CDSS, et al.Johnston et al.	Ethical &	AI-driven	Lack of	Leoal	•			Emeka &
Concerns with AIerrors, unclear liability in automation failuresframework s, algorithm biasespatient harm risksaccountab ility laws, AImalpractice regulationsce, Explainab le AI, Framewor ks(2020), Bates et al. (2003)AlertExcessive Fatigue in Clinical DecisionPoorly optimized alertIncreased risk of missed criticalOptimizin g alert algorithm s, filteringAI-based alertAI, ML, CDSS, alertJohnston et al. (1994), Miller &						-		
with AIunclear liability in automation failuress, algorithm biasesharm risks algorithm transparen protocolsility laws, AI transparen cy protocolsregulations Lead, Explainab Explainab Ethical AI Framewor ksAlertExcessive Fatigue in Clinical DecisionPoorly optimized alertIncreased risk of missed criticalOptimizin g alert algorithm s, filteringAI-based alert prioritizatio n, real-timeAI, ML, CDSS, Human FactorsJohnston et al. (1994), Miller &	_	1 1			_			
liability in automation failures liability in automation biases liability in automation failures liability in automation biases liability in automation liabilit		·					,	
automation failures biases transparen cy protocols ks Alert Excessive notifications optimized risk of Clinical reduce alert ochinician systems, critical stransparen cy protocols rotations transparen cy protocols rotations optimized risk of g alert alert cDSS, et al. (1994), no real-time reduce failures reduce alert systems, critical systems, critical systems, systems, critical systems, critical systems reduce failures reduce	WILL AI			1141111 118KS		regulations		
failures cy protocols Framewor ks Alert Excessive notifications optimized risk of Clinical reduce alert Decision clinician systems, critical s, filtering n, real-time reaction reaction cyprotocols (continuation) Fraction (continuation) Cyprotocols (continuation) AI-based AI, ML, Johnston alert alert CDSS, et al. (1994), prioritizatio Human (1994), Miller & Factors Miller & Continuation (1994), Miller & Continuation (1994)								ai. (2003)
Alert Excessive Poorly Increased Optimizin AI-based AI, ML, Johnston Fatigue in notifications optimized risk of g alert alert CDSS, et al. Clinical reduce alert missed algorithm prioritizatio Human (1994), Decision clinician systems, critical s, filtering n, real-time Factors Miller &			biases		_			
AlertExcessive Fatigue in Clinical DecisionExcessive notifications clinicianPoorly optimized alertIncreased risk of missed criticalOptimizin g alert algorithmAI-based alert prioritizatio n, real-timeAI, ML, CDSS, Human FactorsJohnston et al.		failures			•			
Fatigue in Clinical Decisionnotifications reduce clinicianoptimized alert systems,risk of missed criticalg alert algorithm s, filteringalert prioritizatio n, real-timeCDSS, Human Factorset al. (1994), Miller &								
Clinical Decisionreduce clinicianalert systems,missed criticalalgorithm s, filteringprioritizatio n, real-timeHuman Factors(1994), Miller &					-			
Decision clinician systems, critical s, filtering n, real-time Factors Miller &	Fatigue in	notifications	optimized	risk of	g alert	alert	CDSS,	et al.
Decision clinician systems, critical s, filtering n, real-time Factors Miller &	Clinical	reduce	alert	missed	algorithm	prioritizatio	Human	(1994),
	Decision	clinician	systems,	critical			Factors	
high false- alerts non-					_			

	٠,			-,			
Pa	gρ	N	o.	: 2	1-	36	

							rage No 21-30
Support	responsiven	positive		critical	learning	Engineeri	Sim
(CDSS)	ess	rates		notificatio	systems	ng	(2004)
				ns			
System	Disruptions	Server	Interruptio	Cloud-	AI-	Cloud-	Bates et
Downtime	in	crashes,	ns in	based	powered	based	al.
& Technical	pharmaceuti	software	medication	backup	predictive	EHRs,	(2003),
Failures	cal	bugs,	administrat	systems,	maintenanc	AI-	William
	workflows,	network	ion,	redundanc	e,	powered	(2021)
	patient care	failures	increased	у	blockchain-	Diagnosti	
	delays		workload	protocols	based	cs	
					failover		
					systems		
Automation	Shift in	AI	Workforce	Upskilling	AI	AI,	Babu &
&	pharmacist	replacing	restructuri	programs,	augmentati	Robotics,	Thiyagar
Workforce	and	manual	ng, skill	AI-human	on rather	Workforc	ajan
Displaceme	healthcare	processes,	gaps	collaborat	than	e	(2023),
nt	roles, job	reliance on		ive	replacemen	Managem	Ngusie et
	losses in	automation		models	t, retraining	ent	al. (2022)
	traditional				initiatives	Software	
	settings						

5. Future Directions

As the adoption of electronic health records (EHRs) and automation continues to evolve, future advancements will focus on addressing existing limitations and maximizing the potential of digital healthcare technologies. Enhancing interoperability, expanding artificial intelligence (AI) applications, and refining regulatory frameworks will be crucial in ensuring the efficiency, security, and effectiveness of pharmaceutical management systems. Emerging technologies such as blockchain, AI-driven predictive analytics, and real-time data-sharing platforms hold great promise in overcoming current challenges, improving medication safety, and optimizing pharmaceutical supply chains (Babu & Thiyagarajan, 2023). Governments, healthcare organizations, and technology developers must collaborate to develop standardized solutions that enhance digital integration, protect patient privacy, and enable a seamless transition to fully automated pharmaceutical management.

One of the primary future directions for pharmaceutical management is the enhancement of interoperability and standardization among EHRs, pharmacy management systems, and automated medication dispensing platforms. The lack of seamless data exchange between different healthcare institutions has been a persistent barrier to efficient pharmaceutical operations, often leading to medication discrepancies, prescription errors, and fragmented patient care (Zhang & Saltman, 2022). Developing standardized data-sharing protocols will enable healthcare providers and pharmacies to access complete patient medication histories, ensuring more accurate prescribing, better drug interaction detection, and improved adherence to treatment guidelines. Blockchain technology has been proposed as a potential solution to

interoperability challenges, offering a decentralized, tamper-proof system for securely storing and exchanging medical records across healthcare networks (Babu & Thiyagarajan, 2023). Blockchain can enhance data security by ensuring that patient health records are immutable, reducing the risk of unauthorized modifications allowing while controlled access healthcare to providers. Additionally, the use of Fast Healthcare Interoperability Resources (FHIR) and other standardized frameworks will facilitate better integration between EHR systems and pharmacy automation tools, ensuring that prescription data, inventory updates, and medication tracking information are easily accessible across different platforms (Alsadoun et al., 2023). Future efforts should focus on expanding the adoption of these interoperability standards to enable seamless data sharing across hospitals, pharmacies, and regulatory

Another key area of future development is the expansion of artificial intelligence applications in pharmaceutical management. AI has already begun to revolutionize medication safety, clinical decision support, and inventory management, but future advancements will further enhance its capabilities in predictive analytics, personalized medicine, and automated prescription verification (William, 2021). AI-driven predictive analytics will enable pharmacies and healthcare providers to anticipate medication demand, optimize inventory levels, and reduce drug shortages by analyzing historical prescription patterns, patient demographics, and disease prevalence (Da et al., 2021). Machine learning algorithms will continue to improve medication adherence monitoring, identifying patients at risk of non-compliance recommending targeted interventions to enhance

International Journal of Health Sciences and Engineering (IJHSE)

Website: https://ijhse.com ISSN: 3049-3811

Vol. 1, Issue 1, January-June, 2025

Page No.: 21-36

treatment outcomes. Additionally, AI-powered chatbots and virtual assistants will play an increasingly prominent role in patient counseling, providing automated medication reminders, answering pharmaceutical inquiries, and ensuring that patients understand their prescribed treatment regimens (Zhang & Saltman, 2022). AI-driven fraud detection systems will also become more sophisticated. analyzing prescription records, insurance claims, and provider behavior to identify potential cases of medication fraud, overprescribing, or drug diversion. Future research should explore ways to integrate AI more effectively with existing pharmaceutical management systems, ensuring that these technologies complement rather than replace human expertise in medication decision-making. The development of comprehensive policy and regulatory frameworks will be essential in balancing innovation with patient safety in pharmaceutical automation. As automation and AI become increasingly integrated into medication management, regulatory bodies must establish

guidelines that ensure these technologies are used responsibly, ethically, and transparently (Norris, 2002). The implementation of AI-driven clinical decision support systems, for example, raises important questions about liability accountability in cases where algorithmic recommendations lead to medication errors or adverse drug reactions (Emeka & Lalit, 2020). Governments must work closely with technology developers and healthcare organizations to create clear policies outlining the responsibilities of pharmacists, physicians, and AI system providers in such cases. Additionally, regulatory agencies must establish strict data protection measures to ensure patient confidentiality, preventing unauthorized access to electronic health records and mitigating cybersecurity threats (Babu & Thiyagarajan, 2023). Standardizing global policies for EHR adoption, and AI-driven pharmaceutical sharing, management will be crucial in ensuring that these technologies are implemented safely consistently across different healthcare systems.

Table 4: Future Directions in Pharmaceutical Management through EHRs and Automation

Future	Impact on	Technologi	hnologi Challenges Proposed Future References				
	Pharmaceutic	es Involved	Chanenges	Solutions	Trends	References	
Direction	al	es ilivolveu		Solutions	Trenus		
	**-						
	Management	EIIID	T 1 C	A 1 4	AT 1 '	D 1 0	
Interoperabili	Ensures	FHIR,	Lack of	Adoption	AI-driven	Babu &	
ty &	seamless data	Blockchain,	uniform data	of global	interoperabili	Thiyagaraj	
Standardizati	exchange	Cloud-	standards,	data-	ty solutions,	an (2023),	
on	between	based EHRs	integration	sharing	global health	Zhang &	
	EHRs,		issues	protocols,	IT standards	Saltman	
	pharmacies,			blockchain		(2022)	
	and hospitals			for secure			
				transactions			
AI in	Enhances	AI, ML,	Data biases,	AI fairness	AI-powered	William	
Predictive	medication	Big Data,	ethical	frameworks	medication	(2021), Da	
Analytics &	demand	NLP	concerns in	, improved	adherence	et al.	
Personalizatio	forecasting,		AI-driven	training	tracking,	(2021)	
n	improves		decisions	datasets	real-time		
	personalized				prescription		
	treatments				adjustments		
Improved	Reduces alert	AI, Voice-	Complex	Intuitive	AI-driven	Miller &	
User	fatigue,	assisted	interfaces,	user	personalized	Sim	
Experience &	enhances	EHRs,	cognitive	interfaces,	clinician	(2004),	
Workflow	clinician	UI/UX	overload	adaptive	dashboards	Bates et al.	
Optimization	efficiency	Design		ML		(2003)	
				algorithms			
Cybersecurity	Protects	Blockchain,	Growing	AI-powered	AI-based	Babu &	
& Risk	patient data,	Zero-Trust	cyber	threat	anomaly	Thiyagaraj	
Mitigation	prevents cyber	Security,	threats, lack	detection,	detection,	an (2023),	
	threats	Quantum	of robust	mandatory	quantum	Zhang &	
		Encryption	security in	cybersecuri	encryption	Saltman	
			legacy	ty audits	for EHRs	(2022)	
			systems			, ,	
Digital Twins	Simulates drug	AI, Digital	High	Scalable	AI-powered	Alsadoun	
& Simulation	interactions,	Twins, IoT,	computation	cloud	simulation	et al.	
Technologies	optimizes	Predictive	al costs,	computing,	for	(2023), Da	

Vol. 1, Issue 1, January-June, 2025 Page No.: 21-36

						rage No., 21-30
	pharmaceutica		with real-	modeling	medication	et al.
	l supply chains		world data	systems	workflows	(2021)
Mobile Health	Enhances	Wearable	Data privacy	Secure,	AI-driven	William
(mHealth) &	medication	Biosensors,	concerns,	interoperabl	chatbots,	(2021),
Wearable	adherence,	AI, Mobile	integration	e mobile	smart pill	Zhang &
Tech	enables real-	Apps	with EHRs	health	dispensers	Saltman
	time patient			solutions		(2022)
	monitoring					
Automated	Optimizes	AI,	Regulatory	AI-driven	Smart	Babu &
Pharmaceutic	drug supply	Autonomou	challenges,	inventory	warehouses,	Thiyagaraj
al Logistics	chains,	s Drones,	logistics	tracking,	AI-powered	an (2023),
	prevents	Robotics	infrastructur	autonomou	cold chain	Da et al.
	shortages		e	s delivery	management	(2021)
				systems		
Regulatory &	Defines legal	AI	Lack of	Developme	AI	Emeka &
Ethical AI	responsibilities	Governance	clear	nt of AI-	regulations	Lalit
Frameworks	, ensures	,	policies,	specific	for	(2020),
	ethical AI	Explainable	legal	medical	healthcare,	Norris
	applications	AI,	accountabili	laws,	global	(2002)
		Compliance	ty in AI-	transparent	compliance	
		Software	driven	algorithms	standards	
			decisions			

6. Conclusion

Electronic Health Records (EHRs) and automation have revolutionized pharmaceutical management by improving efficiency, reducing medication errors, and optimizing inventory control. EHRs provide real-time patient data, ensuring accurate prescribing and enhanced clinical decision-making, while automation technologies such as robotic dispensing and AI-powered analytics streamline pharmaceutical workflows and improve medication adherence. However, challenges such interoperability issues, cybersecurity risks, implementation costs, and resistance technological change remain barriers to widespread adoption. Overcoming these obstacles requires collaboration among policymakers, healthcare institutions, and technology developers to establish standardized data-sharing frameworks, enhance security protocols, and ensure user-friendly system designs. As digital transformation continues to shape the healthcare landscape, addressing existing challenges through targeted policy reforms, technological advancements, and industry-wide collaboration will be essential in maximizing the benefits of EHRs and automation. By leveraging emerging innovations and refining current systems, healthcare institutions can create a more efficient, and patient-centered pharmaceutical management framework, ultimately improving health outcomes and reducing healthcare costs.

References

 Akinyemi, O. R., Sibiya, M. N., & Oladimeji, O. (2022). Communication model enhancement using electronic health record standard for tertiary hospital. South African Journal of Information

- *Management*, 24(1), a1472. https://doi.org/10.4102/sajim.v24i1.1472
- Akinyemi, O. R., Sibiya, M. N., & Oladimeji, O. (2023). Computer skills and electronic health record (EHR) in a state tertiary hospital in Southwest Nigeria. Epidemiologia, 4(2), 137–147. https://doi.org/10.3390/epidemiologia4020 010
- 3. Allan, J., & Englebright, J. (2000). Patient-centered documentation: An effective and efficient use of clinical information systems. *Journal of Nursing Administration*, 30, 90–95. https://doi.org/10.1097/00005110-200003000-00005
- Alsadoun, A. A., Tangiisuran, B., & Iskandar, Y. H. (2023). The effect of perceived risk, technology trust, and technology awareness on the consumer's behavioral intention to adopt online pharmacy. *International Journal of Electronic Healthcare*, 13(1), 33–56. https://doi.org/10.1504/IJEH.2023.100482
- Ammenwerth, E., Eichstädter, R., Haux, R., Pohl, U., Rebel, S., & Ziegler, S. (2001). A randomized evaluation of a computer-based nursing documentation system. *Methods of Information in Medicine*, 40, 61–68.
- Ammenwerth, E., Kutscha, U., Kutscha, A., Mahler, C., Eichstädter, R., & Haux, R. (2001). Nursing process documentation systems in clinical routine–Prerequisites and experiences. *International Journal of*

Vol. 1, Issue 1, January-June, 2025

Page No.: 21-36

- *Medical Informatics*, *64*, 187–200. https://doi.org/10.1016/S1386-5056(01)00222-5
- 7. Ammenwerth, E., Mansmann, U., Iller, C., & Eichstädter, R. (2003). Factors affecting and affected by user acceptance of computer-based nursing documentation: Results of a two-year study. *Journal of the American Medical Informatics Association*, 10, 69–84. https://doi.org/10.1197/jamia.M1022
- 8. Apkon, M., & Singhaviranon, P. (2001). Impact of an electronic information system on physician workflow and data collection in the intensive care unit. *Intensive Care Medicine*, 27, 122–130. https://doi.org/10.1007/s001340000799
- 9. Ash, J. S., & Bates, D. W. (2005). Factors and forces affecting EHR system adoption: Report of a 2004 ACMI discussion. *Journal of the American Medical Informatics Association*, 12, 8–12. https://doi.org/10.1197/jamia.M1684
- Babu, G. K., & Thiyagarajan, P. (2023). Broadening of horizons: A review of blockchain's influence on EHRS development trend. *International Journal* of Electronic Healthcare, 13(2), 134–157. https://doi.org/10.1504/IJEH.2023.100482
- Bates, D. W., Kuperman, G. J., Wang, S., Gandhi, T., Kittler, A., Volk, L., et al. (2003). Ten commandments for effective clinical decision support: Making the practice of evidence-based medicine a reality. *Journal of the American Medical Informatics Association*, 10, 523–530. https://doi.org/10.1197/jamia.M1370
- 12. Berg, M. (2001). Implementing information systems in health care organizations: Myths and challenges. *International Journal of Medical Informatics*, 64, 143–156. https://doi.org/10.1016/S1386-5056(01)00200-1
- Beuscart-Zephir, M. C., Anceaux, F., Crinquette, V., & Renard, J. M. (2001). Integrating users' activity modeling in the design and assessment of hospital electronic patient records: The example of anesthesia. *International Journal of Medical Informatics*, 64, 157–171. https://doi.org/10.1016/S1386-5056(01)00220-1
- 14. Binkheder, S., Asiri, M. A., Altowayan, K. W., Alshehri, T. M., Alzarie, M. F., Aldekhyyel, R. N., Almaghlouth, I. A., & Almulhem, J. A. (2021). Real-world evidence of COVID-19 patients' data

- quality in the electronic health records. Healthcare, 9(12), 1648. https://doi.org/10.3390/healthcare9121648
- Boonstra, A., Boddy, D., & Bells, P. (2014). Implementing electronic health records in hospitals: A systematic review. *BMC Health Services Research*, 14, 370. https://doi.org/10.1186/1472-6963-14-370
- Bosman, R. J., Rood, E., Oudemans-Van Straaten, H. M., Van Der Spoel, J. I., Wester, J. P., & Zandstra, D. F. (2003). Intensive care information system reduces documentation time of the nurses after cardiothoracic surgery. *Intensive Care Medicine*, 29, 83–90. https://doi.org/10.1007/s00134-002-1551-7
- 17. Bradshaw, K. E., Sittig, D. F., Gardner, R. M., Pryor, T. A., & Budd, M. (1989). Computer-based data entry for nurses in the ICU. *MD Computing*, *6*, 274–280.
- 18. Burkle, T., Ammenwerth, E., Prokosch, U., & Dudeck, J. (2001). Evaluation of clinical information systems: What can be evaluated and what cannot? *Journal of Evaluation in Clinical Practice*, 7, 373–385. https://doi.org/10.1046/j.1365-2753.2001.00319.x
- 19. Castarlenas, E., Sánchez-Rodríguez, E., Roy, R., Tomé-Pires, C., Solé, E., Jensen, M. P., & Miró, J. (2021). Electronic health literacy in individuals with chronic pain and its association with psychological function. *Energies*, *18*(23), 12528. https://doi.org/10.3390/en182312528
- 20. Committee on Data Standards for Patient Safety, Board on Health Services, Institute of Medicine of the National Academies. (2004). Key capabilities of an electronic health record system: Letter report. The National Academies Press.
- 21. Da, X., Sheng, J. Q., Hu, P. J. H., Ting-Shuo, H., & Chih-Chin, H. (2021). A deep learning-based unsupervised method to impute missing values in patient records for improved management of cardiovascular patients. *IEEE Journal of Biomedical and Health Informatics*, 25(6), 2260.
 - https://doi.org/10.1109/JBHI.2021.306972
- Dennis, K. E., Sweeney, P. M., Macdonald, L. P., & Morse, N. A. (1993). Point-of-care technology: Impact on people and paperwork. *Nursing Economics*, 11, 229– 237.
- 23. Elberg, P. B. (2001). Electronic patient records and innovation in health care services. *International Journal of Medical*

Vol. 1, Issue 1, January-June, 2025

Page No.: 21-36

- *Informatics,* 64, 201–205. https://doi.org/10.1016/S1386-5056(01)00221-9
- 24. Emeka, N., & Lalit, G. (2020). A systematic review of blockchain in healthcare: Frameworks, prototypes, and implementations. *IEEE Access*, 8, 21196–21214. https://doi.org/10.1109/ACCESS.2020.29 70423
- Finkler, S. A., Knickman, J. R., Hendrickson, G., Lipkin, M. Jr., & Thompson, W. G. (1993). A comparison of work-sampling and time-and-motion techniques for studies in health services research. *Health Services Research*, 28, 577–597.
- Fontaine, B. R., Speedie, S., Abelson, D., & Wold, C. (2000). A work-sampling tool to measure the effect of electronic medical record implementation on health care workers. *Journal of Ambulatory Care Management*, 23, 71–85. https://doi.org/10.1097/00004479-200004000-00009
- 27. Herbst, K., Littlejohns, P., Rawlinson, J., Collinson, M., & Wyatt, J. C. (1999). Evaluating computerized health information systems: Hardware, software, and human ware: Experiences from the Northern Province, South Africa. *Journal of Public Health Medicine*, 21, 305–310. https://doi.org/10.1093/pubmed/21.3.305
- 28. Hinson, D. K., Huether, S. E., Blaufuss, J. A., Neiswanger, M., Tinker, A., & Meyer, K. J. (1993). Measuring the impact of a clinical nursing information system on one nursing unit. *Proceedings of the Annual Symposium on Computer Applications in Medical Care*, 203–210.
- 29. Homan, M. M., & Armstrong, T. J. (2003). Evaluation of three methodologies for assessing work activity during computer use. *AIHA Journal (Fairfax, VA)*, 64, 48–55.
 - https://doi.org/10.1080/154281103089848 07
- Johnston, M. E., Langton, K. B., Haynes, R. B., & Mathieu, A. (1994). Effects of computer-based clinical decision support systems on clinician performance and patient outcome: A critical appraisal of research. *Annals of Internal Medicine, 120*, 135–142. https://doi.org/10.7326/0003-4819-120-2-199401150-00012
- Kruithof, N., Bloemen-van Gurp, E., Spierts, N. A., Hagedoren-Meuwissen, E. A., Bemelen, J., & Spreeuwenberg, M. D. (2023). Patient-accessible electronic health

- records: A qualitative study from the perspective of potential users in the Netherlands. *International Journal of Electronic Healthcare*, *13*(2), 169–188. https://doi.org/10.1504/IJEH.2023.100482
- 32. Kuhn, K. A., & Giuse, D. A. (2001). From hospital information systems to health information systems—Problems, challenges, perspectives. *Yearbook of Medical Informatics*, 63–76.
- 33. Kuperman, G. J., & Gibson, R. F. (2003). Computer physician order entry: Benefits, costs, and issues. *Annals of Internal Medicine*, 139, 31–39. https://doi.org/10.7326/0003-4819-139-1-200307010-00012
- 34. LaDuke, S. (2001). Online nursing documentation: Finding a middle ground. *Journal of Nursing Administration, 31*, 283–286. https://doi.org/10.1097/00005110-200105000-00006
- Lau, F., Penn, A., Wilson, D., Noseworthy, T., Vincent, D., & Doze, S. (1998). The diffusion of an evidence-based disease guidance system for managing stroke. *International Journal of Medical Informatics*, 51, 107–116. https://doi.org/10.1016/S1386-5056(98)00107-1
- 36. Leung, G. M., Yu, P. L., Wong, I. O., Johnston, J. M., & Tin, K. Y. (2003). Incentives and barriers that influence clinical computerization in Hong Kong: A population-based physician survey. *Journal of the American Medical Informatics Association*, 10, 201–212. https://doi.org/10.1197/jamia.M1027
- 37. Littlejohns, P., Wyatt, J. C., & Garvican, L. (2003). Evaluating computerized health information systems: Hard lessons still to be learned. *BMJ*, *326*(7394), 860–863. https://doi.org/10.1136/bmj.326.7394.860
- 38. Makoul, G., Curry, R. H., & Tang, P. C. (2001). The use of electronic medical records: Communication patterns in outpatient encounters. *Journal of the American Medical Informatics Association*, 8, 610–615. https://doi.org/10.1136/jamia.2001.008061
- McDonald, C. J., Overhage, J. M., Tierney, W. M., Dexter, P. R., Martin, D. K., Suico, J. G., et al. (1999). The Regenstrief Medical Record System: A quarter-century experience. *International Journal of Medical Informatics*, 54, 225–253.

Vol. 1, Issue 1, January-June, 2025

- https://doi.org/10.1016/S1386-5056(99)00029-5
- 40. Menke, J. A., Broner, C. W., Campbell, D. Y., McKissick, M. Y., & Edwards-Beckett, J. A. (2001). Computerized clinical documentation system in the pediatric intensive care unit. BMCMedical Informatics and Decision Making, 1, 3, https://doi.org/10.1186/1472-6947-1-3
- 41. Miller, R. H., & Sim, I. (2004). Physicians' use of electronic medical records: Barriers and solutions. Health Affairs, 23, 116-126. https://doi.org/10.1377/hlthaff.23.2.116
- 42. Ngusie, H. S., Kassie, S. Y., Chereka, A. A., & Enyew, B. E. (2022). Healthcare providers' readiness for electronic health record adoption: A cross-sectional study during pre-implementation phase. BMC Health Services Research, 22, https://doi.org/10.1186/s12913-022-07360-9
- 43. Nordin, S., Sturge, J., Ayoub, M., Jones, A., McKee, K., Dahlberg, L., Meijering, L., & Elf, M. (2021). The role of information and communication technology (ICT) for older adults' decision-making related to health, and health and social care services in daily life - A scoping review. International Journal of Environmental Research and Public Health, 19(1), 151. https://doi.org/10.3390/ijerph19010151
- 44. Norris, A. C. (2002). Current trends and challenges in health informatics. Health Informatics Journal, 8(4), 205–213. https://doi.org/10.1177/146045820200800 409
- 45. Ogamba, I., Ndukwe, C., & Obeng, I. S. (2023). Use of web-based medication error reporting and management systems in improving medication safety in assisted living facilities: A systematic review. International Journal of Electronic Healthcare, *13*(1), 1-14.https://doi.org/10.1504/IJEH.2023.100482
- 46. Omotosho, A., Ayegba, P., Emuoyibofarhe, J., & Meinel, C. (2019). Current state of ICT in healthcare delivery in developing countries. International Journal of Online Engineering, 15(8), 91-107.https://doi.org/10.3991/ijoe.v15i08.10696
- 47. Ornstein, S. M., Oates, R. B., & Fox, G. N. (1992). The computer-based medical record: Current status. Journal of Family Practice, 35, 556-565.
- 48. Overhage, J. M., Perkins, S., Tierney, W. M., & McDonald, C. J. (2001). Controlled trial of direct physician order entry: Effects physicians' time utilization in

- Page No.: 21-36 ambulatory primary care internal medicine practices. Journal of the American Medical Informatics Association, 8, 361–371. https://doi.org/10.1136/jamia.2001.008036
- 49. Pathak, N., Zhang, C. X., Boukari, Y., Burns, R., Mathur, R., Gonzalez-Izquierdo, A., Denaxas, S., Sonnenberg, P., Hayward, A., & Aldridge, R. W. (2021). Development and validation of a primary care electronic health record phenotype to study migration and health in the UK. International Journal of Environmental Research and Public Health, 18(24), 1–14. https://doi.org/10.3390/ijerph182413112
- 50. Pelletier, D., & Duffield, C. (2003). Work sampling: Valuable methodology to define nursing practice patterns. Nursing & Health Sciences, 31 - 38. 5, https://doi.org/10.1046/j.1442-2018.2003.00137.x
- 51. Pérez-Morales, R., Buades-Fuster, J. M., Esteve-Simó, V., Macía-Heras, M., Mora-Fernández, C., & Navarro-González, J. F. (2022).Electronic patient-reported outcomes in nephrology: Focus on hemodialysis. Journal Clinical of Medicine. 11(3). 861. https://doi.org/10.3390/jcm11030861
- 52. Rotich, J. K., Hannan, T. J., Smith, F. E., Bii, J., Odero, W. W., Vu, N., et al. (2003). Installing and implementing a computerbased patient record system in sub-Saharan Africa: The Mosoriot Medical Record System. Journal of the American Medical Informatics Association, 10, 295–303. https://doi.org/10.1197/jamia.M1274
- 53. Rotman, B. L., Sullivan, A. N., McDonald, T. W., Brown, B. W., DeSmedt, P., Goodnature, D., et al. (1996). A randomized controlled trial of a computerbased physician workstation in an outpatient setting: Implementation barriers to outcome evaluation. Journal of the Medical American *Informatics* 340-348. Association. 3. https://doi.org/10.1136/jamia.1996.960320
- 54. Sandra, V. J. (2013). The electronic health record and its contribution to healthcare information systems interoperability. Procedia Technology, 9(2), 940–948. https://doi.org/10.1016/j.protcy.2013.12.1 05
- 55. Schmitt, K. F., & Wofford, D. A. (2002). Financial analysis projects clear returns electronic medical records. Healthcare Financial Management, 56, 52-57.

Vol. 1, Issue 1, January-June, 2025

Page No.: 21-36

- Shu, K., Boyle, D., Spurr, C., Horsky, J., Heiman, H., O'Connor, P., et al. (2001). Comparison of time spent writing orders on paper with computerized physician order entry. *Medinfo*, 10, 1207–1211.
- 57. Staccini, P., Joubert, M., Quaranta, J. F., Fieschi, D., & Fieschi, M. (2001). Modeling healthcare processes for eliciting user requirements: A way to link a quality paradigm and clinical information system design. *International Journal of Medical Informatics*, 64, 129–142. https://doi.org/10.1016/S1386-5056(01)00219-5
- 58. Stoop, A. P., & Berg, M. (2003). Integrating quantitative and qualitative methods in patient care information system evaluation: Guidance for the organizational decision maker. *Methods of Information in Medicine*, 42, 458–462.
- 59. Thielst, C. B. (2007). The future of healthcare technology. *Journal of Healthcare Management*, 52(1), 7–9. https://doi.org/10.1097/00115514-200701000-00003
- Tierney, W. M., Miller, M. E., Overhage, J. M., & McDonald, C. J. (1993). Physician inpatient order writing on microcomputer workstations: Effects on resource utilization. *JAMA*, 269, 379–383. https://doi.org/10.1001/jama.1993.035000 30055034
- Tierney, W. M., Overhage, J. M., McDonald, C. J., & Wolinsky, F. D. (1994). Medical students' and housestaff's opinions of computerized order-writing. *Academic Medicine*, 69, 386–389. https://doi.org/10.1097/00001888-199405000-00013
- 62. van der Meijden, M. J., Tange, H., Troost, J., & Hasman, A. (2001). Development and implementation of an EPR: How to encourage the user. *International Journal of Medical Informatics*, 64, 173–185. https://doi.org/10.1016/S1386-5056(01)00217-7
- 63. VanDenKerkhof, E. G., Goldstein, D. H., Lane, J., Rimmer, M. J., & Van Dijk, J. P. (2003). Using a personal digital assistant enhances gathering of patient data on an acute pain management service: A pilot study. Canadian Journal of Anesthesia, 50, 368–375.
 - https://doi.org/10.1007/BF03017792
- 64. Warshawsky, S. S., Pliskin, J. S., Urkin, J., Cohen, N., Sharon, A., Binztok, M., et al. (1994). Physician use of a computerized medical record system during the patient encounter: A descriptive study. *Computers*

- and Biomedical Research, 43, 269–273. https://doi.org/10.1016/0010-4825(94)90035-3
- 65. William, B. A. (2021). Constructing epidemiologic cohorts from electronic health record data. *International Journal of Environmental Research and Public Health*, 18, 13193. https://doi.org/10.3390/ijerph182413193
- 66. Wong, D. H., Gallegos, Y., Weinger, M. B., Clack, S., Slagle, J., & Anderson, C. T. (2003). Changes in intensive care unit nurse task activity after installation of a third-generation intensive care unit information system. *Critical Care Medicine*, 31, 2488–2494. https://doi.org/10.1097/01.CCM.00000896 40.01494.74
- 67. Zhang, X., & Saltman, R. (2022). Impact of electronic health record interoperability on telehealth service outcomes. *JMIR Medical Informatics*, 10(1), e31837. https://doi.org/10.2196/31837

20