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Abstract 

Zero-shot learning (ZSL), which enables models to recognize unseen 

classes without prior labeled examples, has gained significant interest in 

machine learning, yet its application in data engineering—particularly 

for automating data mapping across heterogeneous sources—remains 

underexplored. Data mapping, the alignment of data attributes between 

disparate systems, is traditionally labour-intensive and error-prone, 

limiting scalability in complex integration scenarios. This paper proposes 

a novel zero-shot learning framework designed to fully automate data 

mapping without the need for extensive labeled data. Leveraging 

semantic embeddings, natural language processing, and ontology 

alignment, the approach infers attribute mappings by understanding 

semantic relationships and domain context in an unsupervised manner. 

Evaluations on real-world healthcare and financial datasets featuring 

diverse and evolving schemas demonstrate that the framework achieves 

over 90% mapping accuracy on unseen attribute pairs, outperforming 

baseline unsupervised and rule-based methods. Precision and recall 

metrics further confirm its robustness across heterogeneous data types. 

Qualitative feedback from domain experts highlights the high 

interpretability and practical usefulness of automated mapping 

explanations, fostering greater trust and easier downstream validation. 

Compared to traditional supervised approaches, the zero-shot framework 

significantly reduces dependence on labeled data and manual effort, 

accelerating deployment timelines by up to 40%. Case studies also 

showcase its ability to adapt seamlessly to schema changes without 

retraining, emphasizing scalability and flexibility in dynamic data 

environments. While semantic ambiguities occasionally impact mapping 

precision, future work will focus on improved disambiguation 

mechanisms. Overall, this study demonstrates the potential of integrating 

zero-shot learning into data engineering pipelines to transform data 

integration workflows and support intelligent, adaptable data 

ecosystems. 

Keywords; Zero-Shot Learning, Data Engineering, Automated Data 

Mapping, Semantic Embeddings, Schema Matching, Ontology 

Alignment, Data Integration, Unsupervised Learning 
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Introduction 

Data engineering forms the backbone of modern 

artificial intelligence (AI) systems, big data 

analytics, and business intelligence applications. At 

its core, data engineering involves the collection, 

cleaning, transformation, integration, and 

management of data from a myriad of sources such 

as relational databases, APIs, IoT devices, log files, 

and cloud storage systems. The quality, reliability, 

and usability of the data prepared through data 

engineering pipelines profoundly impact 

downstream AI models and analytic insights. 
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Among the numerous challenges data engineers 

face, one of the most critical and time-consuming 

tasks is data mapping—the process of aligning or 

matching fields, attributes, or schemas between 

heterogeneous data sources. 

Data mapping is essential for ensuring data 

interoperability, facilitating seamless data 

integration, migration between systems, and 

enabling consistent analytics across distributed 

environments. For instance, in enterprise data 

warehousing, data from different departments with 

varying terminologies and formats must be 

harmonized before being used for reporting or 

machine learning. Similarly, in healthcare, patient 

data collected from multiple hospital systems 

require precise mapping of medical codes and 

clinical attributes to build unified electronic health 

records. Despite its importance, data mapping 

remains a largely manual and error-prone activity, 

often involving domain experts painstakingly 

creating mapping rules, dictionaries, or ontologies. 

This labour-intensive approach does not scale well 

given the explosive growth in data volume, variety, 

and velocity, leading to delays in data pipeline 

deployments and increased maintenance costs. 

Traditional automated approaches to data mapping 

have leveraged supervised machine learning 

techniques that require substantial amounts of 

labeled data—pairs of source and target attributes 

along with explicit mappings. While effective in 

constrained or well-curated settings, these methods 

face two fundamental limitations. First, acquiring 

high-quality labeled datasets for data mapping is 

expensive, time-consuming, and often infeasible in 

dynamic environments where new data sources 

continuously emerge. Second, supervised models 

generally struggle to generalize to new attributes or 

schema elements that were not seen during training, 

necessitating frequent retraining and human 

intervention. 

To overcome these challenges, Zero-Shot Learning 

(ZSL) has emerged as a promising paradigm in 

recent years. Zero-shot learning refers to the ability 

of models to correctly predict or infer classes, labels, 

or mappings for data instances belonging to 

categories that were never explicitly encountered 

during training. By leveraging auxiliary information 

such as semantic embeddings, attribute descriptions, 

or knowledge graphs, zero-shot models can 

generalize knowledge learned from known classes to 

previously unseen ones. Although zero-shot learning 

has been extensively studied and successfully 

applied in domains such as computer vision, natural 

language processing, and recommender systems, its 

application in data engineering and especially 

automated data mapping remains relatively 

unexplored. 

The potential of zero-shot learning to revolutionize 

data mapping stems from its ability to drastically 

reduce human dependency by eliminating the need 

for exhaustive labeled examples of every possible 

attribute pair. By incorporating semantic 

understanding of attribute names, contextual 

metadata, and domain knowledge encoded in 

embeddings or ontologies, zero-shot models can 

infer mappings on-the-fly, enabling rapid integration 

of new data sources without manual rule creation. 

This capability is particularly valuable in modern 

data ecosystems characterized by heterogeneity, 

frequent schema changes, and continuous 

onboarding of diverse datasets. 

Moreover, zero-shot learning frameworks can 

improve interpretability and transparency in data 

mapping decisions by providing confidence scores, 

explanation rationales, and traceability of mappings 

derived from semantic similarities. Such 

explainability is crucial for critical applications in 

regulated domains such as healthcare, finance, and 

governance, where data provenance and 

trustworthiness must be verifiable. By automating 

data mapping with zero-shot techniques, 

organizations can accelerate data pipeline 

development, reduce errors, lower operational costs, 

and facilitate collaborative workflows between data 

engineers, domain experts, and business 

stakeholders. 

Despite the promising advantages, realizing fully 

automated data mapping through zero-shot learning 

faces several technical and practical challenges. The 

semantic gap between attribute names across 

heterogeneous sources can be substantial, 

particularly when naming conventions, 

abbreviations, or languages differ. Additionally, the 

quality and availability of auxiliary semantic 

information such as attribute descriptions, 

ontologies, or embeddings—greatly influence zero-

shot model performance. The dynamic nature of data 

environments demands continuous adaptation of 

models to evolving schemas and emerging concepts. 

Furthermore, evaluating the accuracy and robustness 

of zero-shot data mapping systems requires 
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comprehensive benchmarks and real-world 

validation on diverse datasets. 

This paper aims to explore these challenges and 

opportunities by investigating the integration of 

zero-shot learning methods into the data engineering 

workflow for automated data mapping. We provide 

a detailed analysis of the current state-of-the-art in 

zero-shot learning and data mapping techniques, 

identifying gaps and potential synergies. Our 

contributions include designing a zero-shot data 

mapping framework that utilizes semantic 

embeddings, knowledge graphs, and contextual 

metadata to infer mappings without prior training on 

target attributes. We discuss methods to enhance 

interpretability and auditability of the mapping 

decisions to build stakeholder trust. Additionally, we 

present empirical evaluations on real-world datasets 

from domains such as healthcare and finance to 

demonstrate the efficacy, scalability, and practical 

benefits of our approach. 

 

Recent Survey 

Data mapping remains a critical bottleneck in data 

engineering pipelines, particularly as organizations 

grapple with heterogeneous data sources. 

Traditional approaches require extensive manual 

effort to align schemas across systems [10], creating 

scalability issues in dynamic environments. Manual 

mapping processes are especially problematic in 

domains like healthcare and finance where semantic 

heterogeneity can lead to critical errors [25]. The 

labour-intensive nature of schema alignment has 

been extensively documented, with studies showing 

it consumes >60% of data integration project time 

[16]. Supervised machine learning methods have 

attempted to automate mapping but face 

fundamental limitations: they require large volumes 

of labeled attribute pairs for training [9] and fail to 

generalize to unseen schemas [29]. This constraint 

becomes severe in environments with frequent 

schema evolution [21], where retraining models is 

impractical. The emergence of zero-shot learning 

(ZSL) offers a paradigm shift by enabling models to 

infer mappings for entirely novel attributes using 

semantic relationships rather than explicit training 

examples [6]. 

Foundations of Zero-Shot Learning 

Zero-shot learning originated in computer vision to 

classify unseen objects by transferring knowledge 

from seen categories [5]. Early approaches like 

Devise pioneered semantic embedding spaces where 

image features and class descriptors coexist [4], 

enabling cross-modal inference. These techniques 

leverage auxiliary information – typically attribute 

descriptions or ontological relationships – to bridge 

seen and unseen classes [6]. The theoretical 

framework was formalized by Xian et al., who 

demonstrated that ZSL models could achieve robust 

generalization by projecting features into semantic 

spaces derived from knowledge bases [28]. 

Transformative architectures like BERT [1] and 

CLIP [7] later enabled cross-modal alignment at 

scale, with CLIP showing that contrastive learning 

on image-text pairs could facilitate zero-shot 

transfer across domains. These advances established 

that semantic coherence between representations is 

more critical than direct supervision [37]. Recent 

work has extended these principles to structured 

data: Radford et al. showed language models could 

infer database relationships through semantic 

proximity [7], while Zhang et al. applied ZSL to 

entity linking using descriptive embeddings [35]. 

Semantic Technologies for Data Mapping 

Semantic embeddings provide the backbone for 

ZSL-based mapping. Word2Vec [2] and GloVe [3] 

demonstrated that distributed representations 

capture linguistic relationships transferable to 

schema matching. For instance, embeddings can 

recognize that "DOB" and "DateOfBirth" are 

semantically equivalent without explicit rules [12]. 

Knowledge graphs further enhance this capability: 

ConceptNet [16] and DBpedia [29] provide 

structured relationships that help resolve 

terminological discrepancies (e.g., "PT" → "Patient" 

in healthcare). Ontology alignment techniques [11] 

have evolved to leverage these resources, with 

frameworks like LogMap [23] using logical 

reasoning to infer equivalences between schema 

elements. Crucially, graph embedding methods like 

TransE [19] enable vector-based ontology 

alignment, allowing similarity calculations between 

schema nodes without predefined mappings [34]. 

This semantic infrastructure allows ZSL models to 

interpret "PhysicianName" and "DoctorID" as 

related through medical domain ontologies [25]. 

Traditional Approaches to Automated Mapping 

Prior to ZSL, schema matching relied heavily on 

syntactic and structural similarity. Rule-based 

systems used constraints, data types, and naming 

conventions [10], while similarity-based methods 

employed edit distances or token matching [21]. 

Machine learning approaches later dominated, with 
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random forests and SVMs trained on schema-pair 

corpora [9]. However, these required curated 

training data spanning all possible source-target 

combinations [29]. Ontology-driven approaches 

improved generalizability but demanded extensive 

domain knowledge to build and maintain [24]. The 

Aurum system [12] exemplified data-driven 

discovery but still relied on precomputed metadata. 

Crucially, all these methods struggled with concept 

drift: when schemas evolved or new attributes 

emerged, performance degraded significantly [21]. 

This limitation highlighted the need for approaches 

that could generalize beyond training distributions – 

a gap ZSL directly addresses. 

Zero-Shot Learning for Data Mapping 

Recent work has adapted ZSL specifically for 

schema alignment. Zhang et al. proposed a dual-

encoder architecture where attribute names and 

descriptions are projected into a shared space [40], 

enabling similarity-based matching without training 

on target schemas. Chen et al. combined BERT 

embeddings with ontological hierarchies to infer 

healthcare data mappings [24], achieving 85% 

accuracy on unseen ICD-11 codes. Key innovations 

include: 

Attribute Description Enrichment: Using LLMs to 

generate contextual descriptions for ambiguous 

attributes [38] 

Cross-Modal Alignment: Aligning tabular schemas 

with textual knowledge bases [7] 

Confidence Calibration: Uncertainty quantification 

for mapping decisions [35] 

Jiménez-Ruiz et al. demonstrated that ZSL-based 

ontology alignment outperforms supervised 

methods when new entities are introduced [23]. 

However, challenges persist in handling 

abbreviations ("Acct" → "Account") and polysemy 

("Date" could mean transaction date or birth date) 

[31]. Hybrid approaches that combine ZSL with 

limited human feedback show promise: Rahman et 

al.'s framework uses active learning to refine zero-

shot predictions [8]. 

Integration into Data Engineering Pipelines 

Embedding ZSL into production pipelines requires 

architectural innovations. Fernandez et al. proposed 

metadata harvesters that automatically extract 

schema semantics for embedding generation [12]. 

Modern implementations use schema registries with 

versioned embeddings to track evolution [21]. For 

dynamic environments, Medisetty advocates 

"intelligent data flows" where ZSL modules 

intercept new sources to suggest mappings before 

ingestion [6]. Crucially, explainability mechanisms 

are integrated: SHAP values show which semantic 

features drove mapping decisions [2], while 

ontology paths visualize alignment rationales [11]. 

Performance optimization is achieved through 

embedding indexing: Bonifati et al. demonstrated 

sub-second matching over 10k attributes using 

approximate nearest-neighbor search [21]. 

Scalability tests show ZSL reduces mapping 

deployment time from weeks to hours when 

onboarding new financial systems [17]. 

 Domain-Specific Applications 

Healthcare 

Medical data integration faces extreme 

heterogeneity across HL7, FHIR, and proprietary 

formats. Koutrouli et al. showed ZSL can map 

clinical attributes with 92% accuracy by leveraging 

UMLS ontologies [25]. A key innovation is 

symptom normalization: mapping colloquial terms 

("Heart attack") to SNOMED codes ("Myocardial 

infarction") through semantic embeddings [40]. 

Shylaja's self-learning framework continuously 

adapts embeddings using EHR data streams [3], 

crucial for handling new medical terminologies. 

Finance 

Financial schema matching must address regulatory 

variability (e.g., MiFID II vs. SEC taxonomies). 

Singamsetty's governance framework uses ZSL to 

align transaction fields across banking systems [9], 

with audit trails for compliance. In fintech, ZSL 

enables real-time mapping of alternative data (e.g., 

social media sentiment → risk features) [6]. 

Evaluations show 30% cost reduction in data lake 

onboarding compared to ETL tools [17]. 

 

Proposed Methodology 

This work introduces a novel Zero-Shot Learning 

(ZSL) framework aimed at fully automating the data 

mapping process in heterogeneous data engineering 

environments. Data mapping, the task of aligning 

source data attributes with corresponding target 

attributes, is crucial for successful data integration, 

migration, and interoperability. Traditional methods 

depend heavily on manual input or supervised 

learning models that require large volumes of 

labeled examples, which is costly, time-consuming, 

and limits adaptability. Our proposed methodology 

overcomes these constraints by leveraging zero-shot 

learning techniques that enable models to infer 
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mappings for previously unseen attributes without 

explicit prior training examples. 

The proposed framework integrates multiple 

complementary components designed to operate 

cohesively within existing data engineering 

pipelines. The key elements include semantic 

embedding extraction, ontology alignment, zero-

shot classification, symbolic reasoning for 

interpretability, continuous integration, and human-

in-the-loop feedback mechanisms. Figure 1 

illustrates the overall architecture of the framework, 

depicting the input, main processing stages, 

feedback loops, and final output. 

Semantic Embedding Extraction 

The first step in the pipeline involves generating 

semantic embeddings for each data attribute—both 

from the source and the target schema. Semantic 

embeddings transform raw attribute names, 

descriptions, and metadata into rich vector 

representations that capture the contextual meaning 

of the attributes in a high-dimensional space. This is 

achieved using state-of-the-art pretrained language 

models such as BERT, RoBERTa, or GPT-based 

models, which have been shown to encode deep 

semantic and syntactic relationships. 

By utilizing such pretrained models, the framework 

benefits from extensive prior linguistic knowledge 

without requiring task-specific training. The 

embeddings capture subtle nuances in attribute 

naming conventions, domain-specific jargon, 

abbreviations, and synonymous terms. This allows 

the system to better understand semantic similarity 

even when attribute labels differ across schemas or 

when novel attributes appear. 

For example, an attribute labeled “DOB” in the 

source dataset and “DateOfBirth” in the target 

dataset will have embeddings placed close together 

in the semantic space, facilitating accurate matching 

despite syntactic variation. 

Ontology Alignment and Shared Semantic Space 

While semantic embeddings provide a powerful way 

to represent attribute meanings, direct comparison is 

insufficient in complex environments with diverse 

and evolving schemas. To address this, the 

framework incorporates ontology alignment 

techniques to create a shared semantic space where 

both source and target attributes can be meaningfully 

compared. 

Ontologies provide a formal representation of 

domain knowledge, defining concepts, 

relationships, and hierarchies. Our approach 

leverages existing domain ontologies (or 

automatically generated ones) to align the 

embedding spaces of source and target attributes, 

thus facilitating cross-schema comparison beyond 

mere lexical similarity. 

By aligning ontologies, the system can recognize 

that attributes from different datasets correspond to 

the same underlying concept even if expressed 

differently. For instance, “PatientAge” and 

“AgeOfClient” can be linked through their 

association with the concept of “Age” in the 

healthcare ontology. 

This ontology alignment process involves 

computing mappings between concepts, merging 

related nodes, and harmonizing hierarchical 

structures to build a unified semantic representation. 

The outcome is a robust, interpretable shared 

semantic space that improves the accuracy of 

attribute matching. 

Zero-Shot Classification for Data Mapping 

At the heart of the methodology lies the zero-shot 

classifier, which predicts mapping relationships 

between source and target attributes using similarity 

metrics computed in the aligned semantic space. 

Unlike conventional supervised classifiers that 

require labeled mapping pairs, the zero-shot 

classifier leverages semantic similarity to infer 

mappings for unseen attributes or entirely new 

schema versions. 

The classifier calculates a similarity score—using 

metrics such as cosine similarity or learned neural 

similarity functions—between the semantic 

embeddings of each candidate source-target 

attribute pair. These scores indicate the likelihood 

that the pair corresponds to the same semantic 

concept. 

A threshold-based decision mechanism determines 

valid mappings, optionally refined by domain-

specific heuristics or confidence estimates. This 

approach enables the model to generalize mappings 

to new attributes that were not observed during 

training or manual labeling, thereby vastly 

increasing scalability and reducing human effort. 

Symbolic Reasoning for Interpretability 

One of the most significant challenges in automated 

data mapping is ensuring interpretability and 

transparency. Data engineers and domain experts 

need to understand not only what mappings are 

produced but also the rationale behind them, 

especially in regulated or high-stakes environments. 
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To address this, our framework integrates symbolic 

reasoning techniques grounded in the aligned 

ontology structure. Symbolic reasoning modules 

generate transformation rules and mapping 

rationales that explain how and why particular 

attribute mappings were inferred. These 

explanations are derived by tracing logical paths 

through the ontology, utilizing rule-based inference, 

and summarizing semantic relationships. 

For example, if an attribute is mapped based on 

being a subtype of another concept or sharing 

particular properties, the symbolic reasoning module 

documents these connections as part of the output. 

This provides a human-readable explanation that 

supports auditability and trust in the automated 

mapping process. 

By combining data-driven embeddings with 

symbolic, rule-based explanations, the framework 

achieves a unique balance of accuracy and 

explainability, facilitating stakeholder confidence 

and compliance. 

Integration and Continuous Learning 

The proposed zero-shot learning framework is 

designed to seamlessly integrate into existing data 

engineering workflows. Recognizing that data 

schemas continuously evolve and new sources are 

regularly introduced, the pipeline supports 

continuous learning and adaptation. 

As new attributes appear or schemas change, the 

pretrained embedding models can be fine-tuned or 

re-applied without extensive retraining. The 

ontology alignment module can update the shared 

semantic space to incorporate new concepts or 

relationships dynamically. The zero-shot classifier 

remains capable of predicting mappings without 

retraining on new labeled data. 

This continuous adaptation ensures the data 

mapping process remains robust and up-to-date, 

significantly reducing maintenance overhead and 

time-to-deployment. 

Confidence Estimation and Human-in-the-Loop 

Feedback 

To further enhance reliability and quality control, the 

framework includes confidence estimation modules 

that assign confidence scores to each predicted 

mapping. Low-confidence mappings are flagged for 

human review, enabling targeted validation where it 

matters most. 

Additionally, the framework supports human-in-the-

loop feedback, where domain experts can approve, 

reject, or modify mappings. This feedback is then 

fed back into the system, enabling incremental 

improvement of the ontology alignment, similarity 

metrics, and classifier behaviour over time. 

This interactive loop combines the efficiency of 

automation with the precision of expert knowledge, 

creating a hybrid approach that scales while 

maintaining high accuracy and accountability. 

Figure 1 presents a compact overview of the entire 

framework, highlighting the input sources, main 

processing components, feedback mechanisms, and 

outputs. This illustration captures the flow from raw 

data attributes and metadata to fully mapped 

attributes accompanied by interpretable 

transformation rules and rationales, emphasizing 

both automation and transparency. 
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Results and Analysis 

The proposed zero-shot learning framework was 

rigorously evaluated on several real-world datasets, 

including healthcare patient records and financial 

transaction logs, characterized by diverse and 

evolving schemas. Quantitative results demonstrate 

that the framework achieves over 90% mapping 

accuracy on unseen attribute pairs, significantly 

outperforming baseline unsupervised and rule-based 

methods (see Figure 2: Mapping Accuracy 

Comparison (Zero-Shot vs Baselines)). Further 

evaluation through precision and recall metrics 

confirms the robustness of the framework’s 

performance across heterogeneous data types, as 

illustrated in Figure 3: Precision and Recall Metrics 

Across Datasets. 

In addition to these quantitative metrics, qualitative 

feedback collected from domain experts emphasized 

the high interpretability of the generated mappings 

and the practical value of automated explanations 

for downstream validation tasks. This expert insight 

is summarized in Figure 6: Expert Feedback on 

Interpretability and Usefulness, which highlights 

positive reception regarding clarity and 

trustworthiness. 

Compared to traditional supervised learning models, 

the zero-shot framework substantially reduces 

dependency on labeled data and manual 

intervention, resulting in accelerated deployment 

timelines by up to 40%, as shown in Figure 4: 

Deployment Time Reduction. This efficiency gain is 

crucial for dynamic data engineering environments 

where rapid adaptation is necessary. 

Case studies further illustrate the system’s capability 

to adapt to schema changes seamlessly without 

retraining, maintaining high mapping accuracy 

across multiple schema versions (refer to Figure 5: 

Schema Adaptation Case Study (Mapping Accuracy 

over Schema Versions)). This underscores the 

framework’s scalability and flexibility in handling 

evolving data landscapes. 

Despite these promising results, limitations remain, 

notably the occasional semantic ambiguity in 

attribute names that can affect mapping precision. 

Addressing this challenge through enhanced 

disambiguation mechanisms forms an important 

avenue for future research. 
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Conclusion 

This work presents a pioneering application of zero-

shot learning to the critical data engineering problem 

of automated data mapping. By integrating semantic 

embeddings, ontology alignment, and symbolic 

reasoning, our framework achieves high accuracy 

and interpretability while minimizing human 

labeling effort. The demonstrated effectiveness on 

real-world datasets from healthcare and finance 

illustrates the potential for zero-shot learning to 

revolutionize data integration workflows. Future 

research directions include expanding semantic 

context sources, improving disambiguation 

algorithms, and extending the approach to support 

multi-modal data mapping. Ultimately, this 

approach moves the field toward fully automated, 

intelligent data engineering systems capable of 

adapting to evolving data landscapes with minimal 

human oversight, thereby enhancing the efficiency 

and reliability of AI pipelines. 
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